首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4187篇
  免费   451篇
  国内免费   5篇
  4643篇
  2021年   43篇
  2019年   29篇
  2018年   48篇
  2017年   31篇
  2016年   69篇
  2015年   103篇
  2014年   137篇
  2013年   156篇
  2012年   229篇
  2011年   195篇
  2010年   143篇
  2009年   124篇
  2008年   211篇
  2007年   190篇
  2006年   187篇
  2005年   201篇
  2004年   197篇
  2003年   179篇
  2002年   167篇
  2001年   75篇
  2000年   61篇
  1999年   72篇
  1998年   50篇
  1997年   47篇
  1996年   39篇
  1995年   40篇
  1993年   42篇
  1992年   47篇
  1991年   58篇
  1990年   53篇
  1989年   47篇
  1988年   40篇
  1987年   32篇
  1985年   30篇
  1984年   36篇
  1983年   51篇
  1982年   44篇
  1981年   50篇
  1980年   44篇
  1979年   50篇
  1978年   48篇
  1977年   30篇
  1976年   43篇
  1975年   39篇
  1974年   49篇
  1973年   32篇
  1972年   32篇
  1971年   28篇
  1970年   33篇
  1969年   31篇
排序方式: 共有4643条查询结果,搜索用时 0 毫秒
141.
Vascular plants reinforce the cell walls of the different xylem cell types with lignin phenolic polymers. Distinct lignin chemistries differ between each cell wall layer and each cell type to support their specific functions. Yet the mechanisms controlling the tight spatial localization of specific lignin chemistries remain unclear. Current hypotheses focus on control by monomer biosynthesis and/or export, while cell wall polymerization is viewed as random and nonlimiting. Here, we show that combinations of multiple individual laccases (LACs) are nonredundantly and specifically required to set the lignin chemistry in different cell types and their distinct cell wall layers. We dissected the roles of Arabidopsis thaliana LAC4, 5, 10, 12, and 17 by generating quadruple and quintuple loss-of-function mutants. Loss of these LACs in different combinations led to specific changes in lignin chemistry affecting both residue ring structures and/or aliphatic tails in specific cell types and cell wall layers. Moreover, we showed that LAC-mediated lignification has distinct functions in specific cell types, waterproofing fibers, and strengthening vessels. Altogether, we propose that the spatial control of lignin chemistry depends on different combinations of LACs with nonredundant activities immobilized in specific cell types and cell wall layers.

The spatial control of lignin chemistry, and thus of specific cellular functions, depends on combinations of laccases with nonredundant activities in specific cell types and cell wall layers.

IN A NUTSHELL Background: Lignins are a diverse, complex group of aromatic polymers that accumulate in cell walls of vascular plants, reinforcing organs, and enabling long-distance water transport. The different cell wall layers of each cell type exhibit specific lignin chemistries with distinct proportions of specific aromatic substitutions and aliphatic functions. The spatial control of this lignin chemistry was supposed to depend exclusively on the chemical identity of the lignin monomers exported into the cell wall. However, monomer supply alone cannot fully explain the sharp spatial differences between each cell wall layer in the different cell types. We, therefore, investigated whether different paralogs of the lignin monomer-oxidizing LACCASE enzymes are responsible for spatially controlling lignin chemistry at the cell wall layer level for the different cell types in the vascular tissues of plants. Question: How are specific lignin chemistries spatially controlled by LACCASE paralogs in each cell wall layer and cell type? What are the roles of LACCASE-dependent lignin accumulation for the mechanical reinforcement and the waterproofing of different cell types in plant vascular tissues? Findings: We answered these questions by identifying the LACCASE paralogs specifically expressed in vascular cells undergoing lignin accumulation. We analyzed their functions using genetic engineering to switch off five of the six LACCASE paralog genes associated with lignin formation. Their importance in the cell wall layer and cell type lignin accumulation was determined by comparing plants sharing four of the five mutations in different LACCASE paralogs. We show that each LACCASE paralog exhibits specific substrate preference, pH optimum and localization differing between the cell wall layers of each cell type. Their lignin concentration and composition moreover depended on specific combinations of LACCASE paralogs, each enabling different aromatic substitutions and aliphatic functions to accumulate. Impairing these LACCASE-dependent lignin chemistries resulted in the loss of cell wall mechanical resistance of sap-conducting cells and the loss of cell wall waterproofing of organ-reinforcing fiber cells. Next steps: We are now pursuing research to understand the molecular mechanisms controlling the supply of lignin precursors as well as the temporal regulation activating lignification during the formation/maturation of each cell wall layer in the different cell types.  相似文献   
142.
143.
Leonard Rosenthall 《CMAJ》1964,90(17):999-1004
Experience with 500 radio-chlormerodrin renal scans has shown that the technique can detect (1) altered renal function, both focal and generalized, (2) space-occupying kidney lesions, and (3) renal size and disease in some cases in which the blood urea nitrogen is elevated and the excretory urogram inconclusive.The technique is valuable as an adjunct to the intravenous pyelogram since it may discriminate more disease than was thought to be present or may distinguish between anomalous variations in renal outline and calyceal displacement from parenchymal disease. The technique is completely harmless and there are no known contraindications to the test agent, radio-chlormerodrin.  相似文献   
144.
145.
146.
Rawitscher -Kunkel , Erika , and L. Machlis . (U. California, Berkeley.) The hormonal integration of sexual reproduction in Oedogonium. Amer. Jour. Bot. 49 (2) : 177–183. Illus. 1962.—Sexual reproduction in a heterothallic, nannandrous species of Oedogonium was investigated cytologically and physiologically. Several new observations are reported. Oogonial mother cells release a substance which attracts androspores to them. The androspores, when attached to the oogonial mother cells, grow in well-defined directions apparently in response to a hormone originating in the oogonial mother cells. An oogonial mother cell divides into an oogonium and a suffultory cell only after the attached androspores complete their development into dwarf males, each bearing an antheridium. Presumably the developing dwarf males provide a chemical stimulus for the division of the oogonial mother cell. During development, the oogonia become enveloped in a massive gel which also encases the antheridia cut off at the apical ends of the dwarf male plants. The gel appears to function as a sperm trap, preventing the dissemination of the sperm into the surrounding liquid. The sperm are attracted to the protoplasmic papilla which briefly protrudes through the oogonial pore indicating the operation of a second chemotactic agent.  相似文献   
147.
148.
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号