首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104911篇
  免费   6492篇
  国内免费   15篇
  2022年   715篇
  2021年   1524篇
  2020年   1260篇
  2019年   1409篇
  2018年   2640篇
  2017年   2373篇
  2016年   3216篇
  2015年   4228篇
  2014年   4516篇
  2013年   5860篇
  2012年   6809篇
  2011年   6131篇
  2010年   4116篇
  2009年   3401篇
  2008年   5004篇
  2007年   4782篇
  2006年   4624篇
  2005年   3918篇
  2004年   3973篇
  2003年   3502篇
  2002年   3277篇
  2001年   2705篇
  2000年   2504篇
  1999年   2051篇
  1998年   1009篇
  1997年   752篇
  1996年   767篇
  1995年   712篇
  1994年   653篇
  1992年   1233篇
  1991年   1158篇
  1990年   1104篇
  1989年   1170篇
  1988年   968篇
  1987年   990篇
  1986年   906篇
  1985年   954篇
  1984年   781篇
  1983年   701篇
  1982年   587篇
  1979年   794篇
  1978年   598篇
  1977年   584篇
  1975年   693篇
  1974年   753篇
  1973年   714篇
  1972年   654篇
  1970年   621篇
  1969年   686篇
  1968年   646篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
211.
Summary The child with iminoglycinuria is in our observation. Hyperprolinuria was seen at 5 months by screening program. The child was repeatedly examined in the hospital and was seen last time at 16 months. IQ was 67, in the urine were excessive amounts of glycine, proline a hydroxyproline. In the blood aminoacids were in normal levels. In the child was noticed the same increase of proline in the blood as in the control child of the same age following loading test with L-proline, indicating normal intestinal absoption. Both parents and father's sister's 2-year-old mentally retarded child exhibit excessive glycinuria. The father, his sister, father's father, and grandfather are partialy, congenitaly deaf.  相似文献   
212.
DNA complexes with polypeptides (Lys-Ala-Ala)1)] and (Lys-Ala-Ala)34 have been studied using the methods of thermal melting and circular dichroism. Derivative melting curves of (Lys-Ala-Ala)10 DNA differed substantially from those of (Lys-Ala-Ala)34 prepared either by salt gradient dialysis or by direct mixing. Melting curves of the former complex were unimodal or bimodal with Tm increasing continuously withn input lysin-to-DNA phosphate ratio (r); those of the latter complex consisted of three separate transitions with Tm values almost independent of r. Complete reversibility of binding in the (Lys-Ala-Ala)10-DNA system but a slow redistribution of (Lys-Ala-Ala)34 on DNA at low temperature were found in the redistribution experiments Much faster redistribution from denatured to native DNA occurs at the temperature of melting, contributing to the unusual trimodal melting pattern. Circular dichroism curves are very similar for both complexes and indicate little change of DNA conformation upon polypeptide binding.  相似文献   
213.
Ohne Zusammenfassung  相似文献   
214.
215.
Herein, we disclose the discovery and optimization of 2-piperidin-4-yl-acetamide derivatives as MCH-R1 antagonists. Structural investigation of piperidin-4-yl-amide and piperidin-4-yl-ureas identified 2-piperidin-4-yl-acetamide-based MCH-R1 antagonists with outstanding in vivo efficacy but flawed with high affinity towards the hERG potassium channel. While existing hERG SAR information was employed to discover highly potent MCH-R1 antagonists with minimized hERG inhibition, additional hurdles prevented their subsequent clinical exploration.  相似文献   
216.
217.
Chloragogen cells, subserving ion exchange and electron accepting functions, were studied in Tubifex tubifex after insecticide treatment. Chloragogen cells were strongly influenced by in vivo carbofuran poisoning. The first alterations in the chloragogen cells became activated, both the formation and release of the chloragosomes reached a high rate. The released chloragosomes were phagocytosed by the amoebocytes. At an advanced stage of the toxication a heavy loading of the apical cytoplasm of chloragogen cells with lipid droplets, finally degenerative changes both in the chloragogen cells and amoebocytes were observed. Possible mechanisms of the carbofuran toxication and of the protective function of chloragogen cells in T. tubifex are discussed.  相似文献   
218.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   
219.
The phylogenetic relationships among the wall lizards of the Podarcis hispanicus complex that inhabit the south-east (SE) of the Iberian Peninsula and other lineages of the complex remain unclear. In this study, four mitochondrial and two nuclear markers were used to study genetic relationships within this complex. The phylogenetic analyses based on mtDNA gene trees constructed with ML and BI, and a species tree using *BEAST support three divergent clades in this region: the Valencia, Galera and Albacete/Murcia lineages. These three lineages were also corroborated in species delimitation analyses based on mtDNA using bPTP, mPTP, GMYC, ABGD and BAPS. Bayesian inference species delimitation method (BPP) based on both nuclear data and a combined data set (mtDNA + nuclear) showed high posterior probabilities for these three SE lineages (≥0.94) and another Bayesian analysis (STACEY) based on combined data set recovered the same three groups in this region. Divergence time dating of the species tree provided an estimated divergence of the Galera lineage from the other SE group (Podarcis vaucheri, (Albacete/Murcia, Valencia)) at 12.48 Ma. During this period, the Betic–Rifian arc was isolated, which could have caused the isolation of the Galera form distributed to the south of the Betic Corridor. Although lizards from the Albacete/Murcia and Galera lineage are morphologically similar, they clearly represent distinct genetic lineages. The noteworthy separation of the Galera lineage enables us to conclude that this lineage must be considered as a new full species.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号