首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   36篇
  343篇
  2023年   3篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   6篇
  2018年   11篇
  2017年   10篇
  2016年   17篇
  2015年   21篇
  2014年   30篇
  2013年   22篇
  2012年   37篇
  2011年   31篇
  2010年   17篇
  2009年   8篇
  2008年   20篇
  2007年   11篇
  2006年   14篇
  2005年   14篇
  2004年   18篇
  2003年   18篇
  2002年   8篇
  2001年   2篇
  1999年   1篇
  1994年   1篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有343条查询结果,搜索用时 9 毫秒
101.
The Op18/stathmin family of microtubule regulators includes the ubiquitous cytosolic Op18/stathmin (Op18) and the neuronal, primarily Golgi-associated proteins SCG10 and RB3, which all form ternary complexes with two head-to-tail-aligned tubulin heterodimers. To understand the physiological significance of previously observed differences in ternary complex stability, we have fused each of the heterodimer-binding regions of these three proteins with the CD2 cell surface protein to generate confined plasma membrane localization of the resulting CD2 chimeras. Herein, we show that, in contrast to constitutively active CD2-Op18-tetraA, both the CD2-SCG10 and CD2-RB3 chimeras sequestered tubulin at the plasma membrane, which results in >35% reduction of cytosolic tubulin heterodimer levels and consequent delayed formation of mitotic spindles. However, all three CD2 chimeras, including the tubulin sequestration-incompetent CD2-Op18-tetraA, destabilize interphase microtubules. Given that microtubules are in extensive contact with the plasma membrane during interphase, but not during mitosis, these findings indicate that Op18-like proteins have the potential to destabilize microtubules by both sequestration and direct interaction with microtubules. However, the differences in tubulin binding observed in cells also indicate conceptual differences between the functions of low-abundance neural family members, which will accumulate tubulin at specific cellular compartments, and the abundant cytosolic Op18 protein, which will not.  相似文献   
102.
The R2 dimer of mouse ribonucleotide reductase contains a dinuclear iron-oxygen cluster and tyrosyl radical/subunit. The dinuclear diferrous form reacts with dioxygen to generate the tyrosyl radical essential for the catalytic reaction that occurs at the R1 dimer. It is important to understand how the reactivity toward oxygen is related to the crystal structure of the dinuclear cluster. For the mouse R2 protein, no structure has been available with a fully occupied dinuclear metal ion site. A cobalt substitution of mouse R2 was performed to produce a good model for the very air-sensitive diferrous form of the enzyme. X-band EPR and light absorption studies (epsilon(550 nm) = 100 mm(-1) cm(-1)/Co(II)) revealed a strong cooperative binding of cobalt to the dinuclear site. In perpendicular mode EPR, the axial signal from mouse R2 incubated with Co(II) showed a typical S = 3/2 Co(II) signal, and its low intensity indicated that the majority of the Co(II) bound to R2 is magnetically coupled. In parallel mode EPR, a typical integer spin signal (M(s) = +/-3) with g approximately 12 is observed at 3.6 K and 10 K, showing that the two Co(II) ions (S = 3/2) in the dinuclear site are ferromagnetically coupled. We have solved the 2.4 A crystal structure of the Co(II)-substituted R2 with a fully occupied dinuclear cluster. The bridging Co(II) carboxylate ligand Glu-267 adopts an altered orientation compared with its counterpart Glu-238 in Escherichia coli R2. This might be important for proper O(2) activation of the more exposed native diferrous site in mouse R2 compared with E. coli R2.  相似文献   
103.
Preparation and characterisation of chitosans with oligosaccharide branches   总被引:3,自引:0,他引:3  
The trimer 2-acetamido-2-deoxy-D-glucopyranosyl-beta-(1-->4)-2-acetamido-2-deoxy-D-glucopyranosyl-beta-(1-->4)-2,5-anhydro-D-mannofuranose (A-A-M) was reductively N-alkylated onto a fully de-N-acetylated chitosan (F(A)<0.001, DP(n)=25) to obtain branched chitosans with degree of substitution (DS) of 0.070, 0.23 and 0.40, as determined by 1H NMR spectroscopy. The apparent pK(a) values of the primary and secondary amines of the chitosans substituted with the trimer A-A-M were determined by monitoring the chemical shift of the H-2 of GlcN, and were determined as 6.5-6.9 for the primary (unsubstituted) amines and as 5.0-5.2 for the secondary (substituted) amines. The intrinsic pK(a) values (pK(int)) were found to be 7.3-7.4 for the substituted and 8.7 for the unsubstituted amines. The chitosan branched with A-A-M (DS 0.40) was found to be soluble in aqueous solution over the entire pH range. SEC-MALLS (size-exclusion chromatography with a multi-angle laser light scattering detector) further showed that addition of branches did not affect the molar hydrodynamic volume of the chitosan.  相似文献   
104.
105.
Palma K  Zhang Y  Li X 《Current biology : CB》2005,15(12):1129-1135
Plant disease resistance is the consequence of an innate defense mechanism mediated by Resistance (R) genes [1]. The conserved structure of one class of R protein is reminiscent of Toll-like receptors (TLRs) and Nucleotide binding oligomerization domain (NOD) proteins-immune-response perception modules in animal cells [2, 3, and 4]. The Arabidopsis snc1 (suppressor of npr1-1, constitutive, 1) mutant contains a mutation in a TIR-NBS-LRR-type of R gene that renders resistance responses constitutively active without interaction with pathogens [5]. Few components of the downstream signaling network activated by snc1 are known. To search for regulators of R-gene-mediated resistance, we screened for genetic suppressors of snc1. Three alleles of the mutant mos6 (modifier of snc1, 6) partially suppressed constitutive-resistance responses and immunity to virulent pathogens in snc1. Furthermore, the mos6-1 single mutant exhibited enhanced disease susceptibility to a virulent oomycete pathogen. MOS6, identified by positional cloning, encodes importin alpha3, one of eight alpha importins in Arabidopsis [6]. alpha importins mediate the import of specific proteins across the nuclear envelope. We previously reported that MOS3, a protein homologous to human nucleoporin 96, is required for constitutive resistance in snc1 [7]. Our data highlight an essential role for nucleo-cytoplasmic trafficking, especially protein import, in plant innate immunity.  相似文献   
106.
The epidermal growth factor receptor (EGFR) is activated by ionizing radiation (IR) in many human carcinomas, mediating a cytoprotective response and subsequent radioresistance. The underlying molecular mechanisms remain to be understood, and we propose here a specific role for the Tyr-992 residue of EGFR and examine its regulation by the phosphatase, SHP2. The -fold increase in phosphorylation of Tyr-992 in response to IR is twice that seen with ligand (EGF) binding. Mutation of Tyr-992 blocked completely IR-induced EGFR phosphorylation and reduced activation of the downstream signaling molecule, phospholipase Cgamma. IR has previously been demonstrated to inhibit activity of protein-tyrosine phosphatases. Following protein-tyrosine phosphatase inhibition by sodium vanadate both EGFR expressing Chinese hamster ovary (CHO) and A431 exhibited up to an 8-fold increase in the basal level of Tyr-992 phosphorylation, significantly higher than that seen with Tyr-1173, Tyr-1068, and total EGFR Tyr. CHO cells expressing a SHP2 mutant also demonstrated up to an 8-fold increase in the basal level of Tyr-992 phosphorylation. In this study we show the unique association of SHP2 with EGFR in response to IR, with up to a 2.5-fold increase in the direct association of endogenous SHP2 with EGFR-wt in response to 2 gray of IR in both CHO and A431 cells. Mutation of Tyr-992 abolished this response. In conclusion we have identified several differentially activated Tyr residues, one of which is not only more sensitive to activation by IR, translating into differential activation of downstream signaling, but uniquely modulated by the phosphatase SHP2.  相似文献   
107.
In this study, we estimated interstitial histamine concentrations in normal and malignant tissues after a single intravenous (i.v.) injection of 0.5 mg/kg histamine dihydrochloride in the rat. The microdialysis technique was used to collect interstitial fluid from subcutis, liver and a NGW adenocarcinoma. Histamine was absorbed with equal efficiency to all tissues (t 1/2 AB 3.9-7.7 minutes) but maximum concentration (Cmax; nmol/l) of histamine was higher in liver (2,388 +/- 357) than in subcutis (951 +/- 125) (p < 0.01) and subcutaneous tumor (523 +/- 140) (p = 0.01) and, moreover, Cmax in liver tumor (1,752 +/- 326) was higher than in subcutaneous tumor (p = 0.01). The tl/2 elimination was significantly longer in subcutis and subcutaneous tumor than in liver and liver tumor. Area under the curve (AUC; mmol-min/l) for histamine was significantly lower in subcutaneous tumor (9.8 +/- 2.3) than in liver (17.6 +/- 1.9) (p = 0.03) and liver tumor (15.8 +/- 1.8) (p = 0.03). Local tissue blood flow as assessed by the 14C-ethanol method was not significantly altered by the histamine administration. In conclusion, after an i.v. injection of histamine dihydrochloride a higher maximum concentration and AUC of histamine was reached in liver and liver tumor than in subcutaneous tissues.  相似文献   
108.

Introduction

The rise in antimicrobial resistance is a major global concern and requires new treatment strategies. The use of helper compounds, such as thioridazine (TDZ), an antipsychotic drug, in combination with traditional antibiotics must be investigated.

Objectives

The aim of this study was to investigate the efficacy of TDZ as a helper compound for dicloxacillin (DCX) against methicillin-resistant Staphylococcus aureus (MRSA) in vivo, and compare the combination treatment of DCX+TDZ with vancomycin (VAN).

Methods

Mice were inoculated with an intraperitoneal (IP) injection of MRSA (108 CFU) and treated in a 12-hour cycle for 48 hours. By termination, bacterial quantities in a peritoneal flush, spleen and kidneys were obtained. In the main trial the drugs were administered subcutaneously in five treatment groups: 1) DCX, 2) TDZ, 3) DCX+TDZ, 4) VAN, 5) SALINE. Additional smaller studies with IP administration and higher subcutaneous dosages (×1.5 and ×4) of the drugs were subsequently performed.

Results

In the main trial no significant differences were found between DCX+TDZ and DCX or TDZ alone (p≥0.121–0.999). VAN performed significantly better than DCX+TDZ on all bacteriological endpoints (p<0.001). Higher subcutaneous dosages of DCX and TDZ improved the antibacterial efficacy, but the combination treatment was still not significantly better than monotherapy. IP drug administration of DCX+TDZ revealed a significantly better antibacterial effect than DCX or TDZ alone (p<0.001) but not significantly different from VAN (p>0.999).

Conclusion

In conclusion, TDZ did not prove to be a viable helper compound for dicloxacillin against MRSA in subcutaneous systemic treatment. However, IP-administration of DCX+TDZ, directly at the infection site resulted in a synergetic effect, with efficacy comparable to that of VAN.  相似文献   
109.
MethodspMFAP4 was measured in samples from 351 drug users attending treatment centres and from 248 acutely hospitalized medical patients with mixed diagnoses. Linear and logistic multivariate regression analyses were performed and nonparametric receiver operating characteristic-curves for cirrhosis were used to estimate cut-off points for pMFAP4. Univariate and subgroup analyses were performed using non-parametric methods.ResultspMFAP4 increased significantly with liver fibrosis score. pMFAP4 was significantly associated with chronic viral infection in the drug users and with transient elastography in both cohorts. In the mixed patient cohort, pMFAP4 was significantly increased among patients with a previous diagnosis of liver disease or congestive heart failure compared to patients with other diagnoses.ConclusionspMFAP4 has the potential to be used as an outreach-screening tool for liver fibrosis in drug users and in mixed medical patients. pMFAP4 level is positively associated with transient elastography, but additional studies are warranted to validate the possible use of pMFAP4 in larger cohorts and in combination with transient elastography.  相似文献   
110.
Myeloid-derived suppressor cells (MDSCs) are highly immunosuppressive myeloid cells, which increase in cancer patients. The molecular mechanism behind their generation and function is unclear. Whereas granulocytic-MDSCs correlate with poor overall survival in breast cancer, the presence and relevance of monocytic-MDSCs (Mo-MDSCs) is unknown. Here we report for the first time an enrichment of functional blood Mo-MDSCs in breast cancer patients before they acquire a typical Mo-MDSC surface phenotype. A clear population of Mo-MDSCs with the typical cell surface phenotype (CD14+HLA-DRlow/-CD86low/-CD80low/-CD163low/-) increased significantly first during disease progression and correlated to metastasis to lymph nodes and visceral organs. Furthermore, monocytes, comprising the Mo-MDSC population, from patients with metastatic breast cancer resemble the reprogrammed immunosuppressive monocytes in patients with severe infections, both by their surface and functional phenotype but also at their molecular gene expression profile. Our data suggest that monitoring the Mo-MDSC levels in breast cancer patients may represent a novel and simple biomarker for assessing disease progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号