首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   35篇
  2023年   2篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   6篇
  2018年   10篇
  2017年   10篇
  2016年   17篇
  2015年   21篇
  2014年   30篇
  2013年   22篇
  2012年   37篇
  2011年   31篇
  2010年   17篇
  2009年   8篇
  2008年   20篇
  2007年   11篇
  2006年   14篇
  2005年   14篇
  2004年   18篇
  2003年   18篇
  2002年   8篇
  2001年   2篇
  1999年   1篇
  1994年   1篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
281.
Glioblastoma multiforme (GBM) is notoriously resistant to treatment. Therefore, new treatment strategies are urgently needed. ATM elicits the DNA damage response (DDR), which confers cellular radioresistance; thus, targeting the DDR with an ATM inhibitior (ATMi) is very attractive. Herein, we show that dynamic ATM kinase inhibition in the nanomolar range results in potent radiosensitization of human glioma cells, inhibits growth and does not conflict with temozolomide (TMZ) treatment. The second generation ATMi analog KU-60019 provided quick, reversible and complete inhibition of the DDR at sub-micromolar concentrations in human glioblastoma cells. KU-60019 inhibited the phosphorylation of the major DNA damage effectors p53, H2AX and KAP1 as well as AKT. Colony-forming radiosurvival showed that continuous exposure to nanomolar concentrations of KU-60019 effectively radiosensitized glioblastoma cell lines. When cells were co-treated with KU-60019 and TMZ, a slight increase in radiation-induced cell killing was noted, although TMZ alone was unable to radiosensitize these cells. In addition, without radiation, KU-60019 with or without TMZ reduced glioma cell growth but had no significant effect on the survival of human embryonic stem cell (hESC)-derived astrocytes. Altogether, transient inhibition of the ATM kinase provides a promising strategy for radiosensitizing GBM in combination with standard treatment. In addition, without radiation, KU-60019 limits growth of glioma cells in co-culture with human astrocytes that seem unaffected by the same treatment. Thus, inter-fraction growth inhibition could perhaps be achieved in vivo with minor adverse effects to the brain.Key words: AKT, DNA repair, KU-60019, temozolomide  相似文献   
282.
Agonist potency at some neurotransmitter receptors has been shown to be regulated by voltage, a mechanism which has been suggested to play a crucial role in the regulation of neurotransmitter release by inhibitory autoreceptors. Likewise, receptor deactivation rates upon agonist removal have been implicated in autoreceptor function. Using G protein-coupled potassium (GIRK) channel activation in Xenopus oocytes as readout of receptor activity, we have investigated the voltage sensitivities and signaling kinetics of the hH(3)(445) and hH(3)(365) isoforms of the human histamine H(3) receptor, which functions as an inhibitory auto- and heteroreceptor in the nervous system. We have also investigated both the human and the mouse homologues of the related histamine H(4) receptor, which is expressed mainly on hematopoietic cells. We found that the hH(3)(445) receptor is the most sensitive to voltage, whereas the hH(3)(365) and H(4) receptors are less affected. We further observed a marked difference in response deactivation kinetics between the hH(3)(445) and hH(3)(365) isoforms, with the hH(3)(365) isoform being five to six-fold slower than the hH(3)(445) receptor. Finally, using synthetic agonists, we found evidence for agonist-specific voltage sensitivity at the hH(4) receptor. The differences in voltage sensitivities and deactivation kinetics between the hH(3)(445), hH(3)(365), and H(4) receptors might be relevant to their respective physiological roles.  相似文献   
283.
Activation of the apoptotic pathway is a major cause of progressive loss of function in chronic diseases such as neurodegenerative and diabetic kidney diseases. There is an unmet need for an anti-apoptotic drug that acts in the early stage of the apoptotic process. The multifunctional protein Na+,K+-ATPase has, in addition to its role as a transporter, a signaling function that is activated by its ligand, the cardiotonic steroid ouabain. Several lines of evidence suggest that sub-saturating concentrations of ouabain protect against apoptosis of renal epithelial cells, a common complication and major cause of death in diabetic patients. Here, we induced apoptosis in primary rat renal epithelial cells by exposing them to an elevated glucose concentration (20 mM) and visualized the early steps in the apoptotic process using super-resolution microscopy. Treatment with 10 nM ouabain interfered with the onset of the apoptotic process by inhibiting the activation of the BH3-only protein Bad and its translocation to mitochondria. This occurred before the pro-apoptotic protein Bax had been recruited to mitochondria. Two ouabain regulated and Akt activating Ca2+/calmodulin-dependent kinases were found to play an essential role in the ouabain anti-apoptotic effect. Our results set the stage for further exploration of ouabain as an anti-apoptotic drug in diabetic kidney disease as well as in other chronic diseases associated with excessive apoptosis.Subject terms: Apoptosis, Super-resolution microscopy  相似文献   
284.
Communication between the cytoplasm and the nucleus is a fundamental feature of eukaryotic cells. Bidirectional transport of macromolecules across the nuclear envelope is typically mediated by receptors and occurs exclusively through nuclear pore complexes (NPCs). The components and molecular mechanisms regulating nucleocytoplasmic trafficking and signalling processes are well studied in animals and yeast but are poorly understood in plants. Current work shows that components of the NPC and the nuclear import and export machinery play essential roles in plant innate immunity. Translocation of defence regulators and Resistance (R) proteins between the cytoplasm and the nucleus are recently uncovered aspects of plant defence responses against pathogens. Future studies will reveal more details on the spatial and temporal dynamics and regulation of this process.  相似文献   
285.
286.
Cytotoxic T cells and NK cells will acquire features of apoptosis when exposed to oxygen radicals, but the molecular mechanisms underlying this phenomenon are incompletely understood. We have investigated the role of two enzyme systems responsible for execution of cell death, caspases and the poly(ADP-ribose) polymerase (PARP). We report that although human cytotoxic lymphocytes were only marginally protected by caspase inhibitors, PARP inhibitors completely protected lymphocytes from radical-induced apoptosis and restored their cytotoxic function. The radical-induced, PARP-dependent cell death was accompanied by nuclear accumulation of apoptosis-inducing factor and a characteristic pattern of large-fragment DNA degradation. It is concluded that the PARP/apoptosis-inducing factor axis is critically involved in oxygen radical-induced apoptosis in cytotoxic lymphocytes.  相似文献   
287.
It was found that hydroxyurea, l-arginine and l-citrulline respectively significantly stimulated the formation of d-cycloserine in Streptomyces garyphalus. The formation of [14C]-hydroxyurea by washed cells was demonstrated after incubation with l-[guanido-14C]-arginine and l-[ureido-14C]-citrulline. The 15N of H2NCO15NHOH was incorporated to 40% in d-cycloserine. The mass spectrum as well as the 15N NMR spectrum of labelled N,2-dicarbobenzyloxy-d-cycloserine derived from [15N]-hydroxyurea showed that hydroxyurea was the source of the heterocyclic nitrogen in the biosynthesis of d-cycloserine.  相似文献   
288.
289.
Isothermal titration calorimetry has been used to determine thermodynamic parameters of substrate binding to the oxygenase domain of neuronal nitric oxide synthase (nNOS(oxy)) in the presence of the cofactor tetrahydrobiopterin. The intermediate N(omega)-hydroxy-L-arginine (NHA) has a larger affinity than L-Arginine (L-Arg) for nNOS(oxy), with K(d)=0.4+/-0.1 microM and 1.7+/-0.3 microM at 25 degrees C, respectively. nNOS(oxy) binds NHA and L-Arg with DeltaH -4.1+/-0.2 and -1.0+/-0.1 kcal/mol and DeltaS=15 and 23 cal/Kmol respectively. NHA binding is more exothermic probably due to formation of an extra hydrogen bond in the active site compared to L-Arg. The changes in heat capacity (DeltaC(p)) are relatively small for binding of both NHA and L-Arg (-53+/-18 and -95+/-23 cal/L mol, respectively), which indicates that hydrophobic interactions contribute little to binding.  相似文献   
290.
Ergodicity describes an equivalence between the expectation value and the time average of observables. Applied to human behaviour, ergodic theories of decision-making reveal how individuals should tolerate risk in different environments. To optimize wealth over time, agents should adapt their utility function according to the dynamical setting they face. Linear utility is optimal for additive dynamics, whereas logarithmic utility is optimal for multiplicative dynamics. Whether humans approximate time optimal behavior across different dynamics is unknown. Here we compare the effects of additive versus multiplicative gamble dynamics on risky choice. We show that utility functions are modulated by gamble dynamics in ways not explained by prevailing decision theories. Instead, as predicted by time optimality, risk aversion increases under multiplicative dynamics, distributing close to the values that maximize the time average growth of in-game wealth. We suggest that our findings motivate a need for explicitly grounding theories of decision-making on ergodic considerations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号