首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1211篇
  免费   113篇
  1324篇
  2022年   13篇
  2021年   14篇
  2020年   12篇
  2019年   16篇
  2018年   18篇
  2017年   21篇
  2016年   25篇
  2015年   43篇
  2014年   39篇
  2013年   58篇
  2012年   67篇
  2011年   74篇
  2010年   40篇
  2009年   43篇
  2008年   53篇
  2007年   45篇
  2006年   65篇
  2005年   40篇
  2004年   41篇
  2003年   27篇
  2002年   25篇
  2001年   22篇
  2000年   17篇
  1999年   22篇
  1998年   7篇
  1997年   14篇
  1996年   6篇
  1995年   13篇
  1992年   18篇
  1991年   19篇
  1990年   15篇
  1989年   22篇
  1988年   24篇
  1987年   24篇
  1986年   22篇
  1985年   21篇
  1984年   12篇
  1983年   22篇
  1982年   16篇
  1981年   11篇
  1980年   11篇
  1979年   17篇
  1978年   13篇
  1977年   10篇
  1976年   11篇
  1974年   9篇
  1973年   10篇
  1972年   10篇
  1971年   7篇
  1970年   6篇
排序方式: 共有1324条查询结果,搜索用时 0 毫秒
121.
Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is expressed in the cytoplasm and is partly associated with membranes of the smooth endoplasmic reticulum. It shows a protein concentration-dependent increase in GTPase activity, indicating regulation of GTP hydrolysis via G domain dimerization. Here, we characterized a panel of G domain mutants in MxA to clarify the role of GTP binding and the importance of the G domain interface for the catalytic and antiviral function of MxA. Residues in the catalytic center of MxA and the nucleotide itself were essential for G domain dimerization and catalytic activation. In pulldown experiments, MxA recognized Thogoto virus nucleocapsid proteins independently of nucleotide binding. However, both nucleotide binding and hydrolysis were required for the antiviral activity against Thogoto, influenza, and La Crosse viruses. We further demonstrate that GTP binding facilitates formation of stable MxA assemblies associated with endoplasmic reticulum membranes, whereas nucleotide hydrolysis promotes dynamic redistribution of MxA from cellular membranes to viral targets. Our study highlights the role of nucleotide binding and hydrolysis for the intracellular dynamics of MxA during its antiviral action.  相似文献   
122.
This study correlates whole organ measurements of intracellular calcium concentration ([Ca(2+)](i)) with hormone-induced (epinephrine, vasopressin) changes of liver functions (glucose release, K(+) balance and bile flow). [Ca(2+)](i) was measured in the isolated perfused rat liver using the sensor Fura-2 and applying liver surface fluorescence spectroscopy. The technique was improved by (i) minimizing biliary elimination of the sensor by employing a rat strain deficient in canalicular organic anion transport (TR(-) mutation) and (ii) by correcting for changes of interfering intrinsic organ fluorescence that was shown to depend on the oxidation-reduction state (NAD(P)H content) of the organ. Epinephrine (50 nM) elicits an instantaneous peak rise of [Ca(2+)](i) to approx. 400 nM, followed by a sustained elevation that depends on the presence of extracellular Ca(2+). The rise of [Ca(2+)](i) coincides with initiation of glucose release, transient K(+) uptake, and transient stimulation of bile flow. Vasopressin (2 nM) exerts qualitatively similar effects. The transient rise of bile flow is attributed to Ca(2+)-mediated contraction of the pericanalicular actin-myosin web of hepatocytes.  相似文献   
123.
124.
ABGG5 (G5) and ABCG8 (G8) are ABC half-transporters that dimerize within the endoplasmic reticulum, traffic to the cell surface, and mediate cholesterol excretion into bile. Mice harboring defects in the leptin axis (db/db and ob/ob) have reduced biliary cholesterol concentrations. Rapid weight loss brought about by administration of leptin or dietary restriction increases biliary cholesterol excretion. We hypothesized that the reduction in biliary cholesterol in mice harboring defects in the leptin axis is associated with a reduction in G5G8 transporters and that levels of the transporter would increase with leptin administration and dietary restriction. We examined mRNA and protein levels for G5 and G8 in db/db and ob/ob mice. In both models G5 and G8 protein levels were reduced. In ob/ob mice, both leptin administration and dietary restriction increased G5 and G8 protein and biliary cholesterol concentrations. Finally, we examined the effects of tauroursodeoxycholate, which has been shown to increase biliary cholesterol excretion and function as a molecular chaperone. Tauroursodeoxycholate increased G5 and G8 protein and biliary cholesterol concentrations in both wild-type and db/db mice. Our results indicate that the mechanism for reduced biliary cholesterol excretion in db/db and ob/ob mice involves reductions in G5 and G8 protein levels and that this may occur at the level of G5G8 heterodimer assembly within the endoplasmic reticulum.  相似文献   
125.
126.
Enterotoxigenic Escherichia coli (ETEC) strains are important causes of intestinal disease in humans and lead to severe production losses in animal farming. A range of fimbrial adhesins in ETEC strains determines host and tissue tropism. ETEC strains expressing F4 fimbriae are associated with neonatal and post-weaning diarrhea in piglets. Three naturally occurring variants of F4 fimbriae (F4ab, F4ac, and F4ad) exist that differ in the primary sequence of their major adhesive subunit FaeG, and each features a related yet distinct receptor binding profile. Here the x-ray structure of FaeGad bound to lactose provides the first structural insight into the receptor specificity and mode of binding by the poly-adhesive F4 fimbriae. A small D′-D″-α1-α2 subdomain grafted on the immunoglobulin-like core of FaeG hosts the carbohydrate binding site. Two short amino acid stretches Phe150–Glu152 and Val166–Glu170 of FaeGad bind the terminal galactose in the lactosyl unit and provide affinity and specificity to the interaction. A hemagglutination-based assay with E. coli expressing mutant F4ad fimbriae confirmed the elucidated co-complex structure. Interestingly, the crucial D′-α1 loop that borders the FaeGad binding site adopts a different conformation in the two other FaeG variants and hints at a heterogeneous binding pocket among the FaeG serotypes.  相似文献   
127.
Bilaterally asymmetrical glochidia (i.e. bivalved parasitic larvae bearing a large marginal appendage on a single valve) have been reported from five Asian freshwater mussel genera belonging to two separate subfamilies, the Gonideinae (i.e. Pseudodon, Solenaia, and Physunio) and Rectidentinae (i.e. Contradens and Trapezoideus). This classification requires that the bilaterally asymmetrical glochidium‐bearing mussels are not monophyletic, and suggests that this atypical larval morphology evolved twice in the same geographic region. Although homoplastic glochidium characters are known (e.g. marginal appendages and size), we hypothesized that bilaterally asymmetrical glochidia represent a novel morphological synapomorphy. We tested the monophyly of the mussels bearing bilaterally asymmetrical glochidia using a molecular matrix consisting of representatives from all six freshwater mussel families and three molecular markers (28S, 16S, and COI). Bayesian inference, maximum likelihood, and ancestral state reconstruction were employed to estimate the phylogeny and larval trait transformations. The reconstructed phylogeny rejects the monophyly of the asymmetrical glochidium‐bearing mussels and resolves two putative origins of asymmetrical glochidia; however, ancestral state reconstruction supports asymmetrical glochidia as a synapomorphy of only one supraspecific taxon of the Rectidentinae. In the Gonideinae, asymmetrical glochidia were autapomorphic of Pseudodon cambodjensis (Petit, 1865). That is, no other taxa resolved among the Gonideinae had bilaterally asymmetrical glochidia, including other Pseudodon species. We describe how the alleged intrageneric glochidial variation in Pseudodon, and in the other genera of the Gonideinae reported to have asymmetrical glochidia (i.e. Solenaia and Physunio), challenge the resolved convergence of asymmetrical glochidia. Our results are discussed in the context of freshwater mussel larval evolution, patterns in life‐history traits, and the classification of freshwater mussels generally. © 2015 The Linnean Society of London  相似文献   
128.
Efforts to improve photosynthetic efficiency should result in increased rates of carbon assimilation in crop plants in the next few decades. Translation of increased assimilation into higher productivity will require a greater understanding of the relationship between assimilation and growth. In this review, we discuss new progress in understanding how carbon is provided for metabolism and growth at night. In Arabidopsis leaves, the circadian clock controls the rate of degradation of starch to ensure an optimal carbon supply and hence continued growth during the night. These discoveries shed new light on the integration of carbon assimilation and growth over the light-dark cycle. They reveal the importance of considering the carbon economy of the whole plant in attempting to increase crop productivity.  相似文献   
129.
    
Ohne Zusammenfassung(Mit den Tafeln XIII u. XIV)  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号