首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   25篇
  289篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   16篇
  2012年   20篇
  2011年   23篇
  2010年   12篇
  2009年   9篇
  2008年   21篇
  2007年   19篇
  2006年   25篇
  2005年   23篇
  2004年   20篇
  2003年   10篇
  2002年   11篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1990年   3篇
  1989年   2篇
  1986年   2篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1977年   1篇
  1973年   1篇
  1868年   1篇
排序方式: 共有289条查询结果,搜索用时 9 毫秒
91.
Cell surface layers (S-layers) are common structures of the bacterial cell envelope with a lattice-like appearance that are formed by a self-assembly process. Frequently, the constituting S-layer proteins are modified with covalently linked glycan chains facing the extracellular environment. S-layer glycoproteins from organisms of the Bacillaceae family possess long, O-glycosidically linked glycans that are composed of a great variety of sugar constituents. The observed variations already exceed the display found in eukaryotic glycoproteins. Recent investigations of the S-layer protein glycosylation process at the molecular level, which has lagged behind the structural studies due to the lack of suitable molecular tools, indicated that the S-layer glycoprotein glycan biosynthesis pathway utilizes different modules of the well-known biosynthesis routes of lipopolysaccharide O-antigens. The genetic information for S-layer glycan biosynthesis is usually present in S-layer glycosylation (slg) gene clusters acting in concert with housekeeping genes. To account for the nanometer-scale cell surface display feature of bacterial S-layer glycosylation, we have coined the neologism 'nanoglycobiology'. It includes structural and biochemical aspects of S-layer glycans as well as molecular data on the machinery underlying the glycosylation event. A key aspect for the full potency of S-layer nanoglycobiology is the unique self-assembly feature of the S-layer protein matrix. Being aware that in many cases the glycan structures associated with a protein are the key to protein function, S-layer protein glycosylation will add a new and valuable component to an 'S-layer based molecular construction kit'. In our long-term research strategy, S-layer nanoglycobiology shall converge with other functional glycosylation systems to produce 'functional' S-layer neoglycoproteins for diverse applications in the fields of nanobiotechnology and vaccine technology. Recent advances in the field of S-layer nanoglycobiology have made our overall strategy a tangible aim of the near future.  相似文献   
92.
Different reaction yields for l- and d-alanine in the salt-induced peptide formation (SIPF) reaction, differences in the circular dichroism spectra and the complex formation constants of the involved chlorocuprate complexes point at a stereoselective differentiation between the two stereoisomers in the SIPF reaction and give a possible explanation towards the origin of homochirality in the process of the origin of life. An explanation of the observed effects can for the time being only be based on assumptions but could possibly be related to the inherent chirality of the CuII ion as a central atom of the [CuCl(gly)(glyH2)(H2O)2]+ complex due to parity violation in weak interactions and to amplification of chirality related to the structural properties of the complex.  相似文献   
93.
TGF-β family ligands are involved in a variety of critical physiological processes. For instance, the TGF-β ligand myostatin is a staunch negative regulator of muscle growth and a therapeutic target for muscle-wasting disorders. Therefore, it is important to understand the molecular mechanisms of TGF-β family regulation. One form of regulation is through inhibition by extracellular antagonists such as the follistatin (Fst)-type proteins. Myostatin is tightly controlled by Fst-like 3 (Fstl3), which is the only Fst-type molecule that has been identified in the serum bound to myostatin. Here, we present the crystal structure of myostatin in complex with Fstl3. The structure reveals that the N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A, because it utilizes different surfaces on the ligand. This results in conformational differences in the ND of Fstl3 that alter its position in the type I receptor-binding site of the ligand. We also show that single point mutations in the ND of Fstl3 are detrimental to ligand binding, whereas corresponding mutations in Fst have little effect. Overall, we have shown that the NDs of Fst-type molecules exhibit distinctive modes of ligand binding, which may affect overall affinity of ligand·Fst-type protein complexes.  相似文献   
94.
Anthracyclines are amongst the most widely used drugs in oncology, being part of the treatment regimen in most patients receiving systemic chemotherapy. This review provides a comprehensive summary of the sample preparation techniques and chromatographic methods that have been developed during the last two decades for the analysis of the 4 most administered anthracyclines, doxorubicin, epirubicin, daunorubicin and idarubicin in plasma, serum, saliva or urine, within the context of clinical and pharmacokinetic studies or for assessing occupational exposure. Following deproteinization, liquid-liquid extraction, solid phase extraction or a combination of these techniques, the vast majority of methods utilizes reversed-phase C18 stationary phases for liquid chromatographic separation, followed by fluorescence detection, or, more recently, tandem mass spectrometric detection. Some pros and cons of the different techniques are addressed, in addition to potential pitfalls that may be encountered in the analysis of this class of compounds.  相似文献   
95.
Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease.  相似文献   
96.
Streptomyces is an interesting host for the secretory production of recombinant proteins because of its innate capacity to secrete proteins at high level in the culture medium. In this report, we evaluated the importance of the phage-shock protein A (PspA) homologue on the protein secretion yield in Streptomyces lividans. The PspA protein is supposed to play a role in the maintenance of the proton motive force (PMF). As the PMF is an energy source for both Sec- and Tat-dependent secretion, we evaluated the influence of the PspA protein on both pathways by modulating the pspA expression. Results indicated that pspA overexpression can improve the Tat-dependent protein secretion as illustrated for the Tat-dependent xylanase C and enhanced green fluorescent protein (EGFP). The effect on Sec-dependent secretion was less pronounced and appeared to be protein dependent as evidenced by the increase in subtilisin inhibitor (Sti-1) secretion but the lack of increase in human tumour necrosis factor (hTNFα) secretion in a pspA-overexpressing strain.  相似文献   
97.

The number of studies dealing with tertiary ozonation to remove trace organic contaminants (TrOCs) in effluents originating from wastewater treatment plants (WWTPs) is increasing due to the need for upgrading the WWTPs overall performance. To follow-up TrOCs removal in real-time during ozone-based treatment, online surrogate measurements are necessary, of which mainly spectroscopic surrogates (i.e. UV–VIS absorbance and fluorescence) are the emerging techniques in literature. This paper summarizes and reflects on the state-of-the-art as retrieved from more than 100 peer-reviewed studies published between January 2007 and December 2020 and dealing with (1) surrogate correlation models for the prediction of TrOCs removal in secondary effluent and (2) control strategies to adjust the ozone dose during (full-scale) operation. Next to the flow and load proportional ozone dosing strategies, controlling the ozone dose solely based on the characteristics of the effluent entering the ozonation unit, also a differential control strategy based on the change in characteristics due to ozonation of the WWTP effluent is highlighted. The latter seems the best option as flow and load proportional ozone dosing do not consider the amount and/or reactivity of the matrix constituents. The presence of organic and inorganic scavengers of ozone and radicals in the effluent matrix has a significant impact on the TrOCs removal efficiency. This effluent quality can differ in time and between WWTPs, hence the surrogate correlation models should be widely applicable. At the end of the review, recommendations are made for future research and implementation of an effective control strategy for (full-scale) applications.

  相似文献   
98.
The mammalian target of rapamycin (mTOR) modulates immune responses and cellular proliferation. The objective of this study was to assess whether inhibition of mTOR with rapamycin modifies disease severity in two experimental murine models of house dust mite (HDM)-induced asthma. In an induction model, rapamycin was administered to BALB/c mice coincident with nasal HDM challenges for 3 weeks. In a treatment model, nasal HDM challenges were performed for 6 weeks and rapamycin treatment was administered during weeks 4 through 6. In the induction model, rapamycin significantly attenuated airway inflammation, airway hyperreactivity (AHR) and goblet cell hyperplasia. In contrast, treatment of established HDM-induced asthma with rapamycin exacerbated AHR and airway inflammation, whereas goblet cell hyperplasia was not modified. Phosphorylation of the S6 ribosomal protein, which is downstream of mTORC1, was increased after 3 weeks, but not 6 weeks of HDM-challenge. Rapamycin reduced S6 phosphorylation in HDM-challenged mice in both the induction and treatment models. Thus, the paradoxical effects of rapamycin on asthma severity paralleled the activation of mTOR signaling. Lastly, mediastinal lymph node re-stimulation experiments showed that treatment of rapamycin-naive T cells with ex vivo rapamycin decreased antigen-specific Th2 cytokine production, whereas prior exposure to in vivo rapamycin rendered T cells refractory to the suppressive effects of ex vivo rapamycin. We conclude that rapamycin had paradoxical effects on the pathogenesis of experimental HDM-induced asthma. Thus, consistent with the context-dependent effects of rapamycin on inflammation, the timing of mTOR inhibition may be an important determinant of efficacy and toxicity in HDM-induced asthma.  相似文献   
99.
In vitro coculture fermentations of Bifidobacterium longum BB536 and two acetate-converting, butyrate-producing colon bacteria, Anaerostipes caccae DSM 14662 and Roseburia intestinalis DSM 14610, with oligofructose as the sole energy source, were performed to study interspecies interactions. Two clearly distinct types of cross-feeding were identified. A. caccae DSM 14662 was not able to degrade oligofructose but could grow on the fructose released by B. longum BB536 during oligofructose breakdown. R. intestinalis DSM 14610 could degrade oligofructose, but only after acetate was added to the medium. Detailed kinetic analyses of oligofructose breakdown by the last strain revealed simultaneous degradation of the different chain length fractions, in contrast with the preferential degradation of shorter fractions by B. longum BB536. In a coculture of both strains, initial oligofructose degradation and acetate production by B. longum BB536 took place, which in turn also allowed oligofructose breakdown by R. intestinalis DSM 14610. These and similar cross-feeding mechanisms could play a role in the colon ecosystem and contribute to the combined bifidogenic/butyrogenic effect observed after addition of inulin-type fructans to the diet.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号