首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   25篇
  289篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   16篇
  2012年   20篇
  2011年   23篇
  2010年   12篇
  2009年   9篇
  2008年   21篇
  2007年   19篇
  2006年   25篇
  2005年   23篇
  2004年   20篇
  2003年   10篇
  2002年   11篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1990年   3篇
  1989年   2篇
  1986年   2篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1977年   1篇
  1973年   1篇
  1868年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
101.
Different reaction yields for l- and d-alanine in the salt-induced peptide formation (SIPF) reaction, differences in the circular dichroism spectra and the complex formation constants of the involved chlorocuprate complexes point at a stereoselective differentiation between the two stereoisomers in the SIPF reaction and give a possible explanation towards the origin of homochirality in the process of the origin of life. An explanation of the observed effects can for the time being only be based on assumptions but could possibly be related to the inherent chirality of the CuII ion as a central atom of the [CuCl(gly)(glyH2)(H2O)2]+ complex due to parity violation in weak interactions and to amplification of chirality related to the structural properties of the complex.  相似文献   
102.
103.
104.
Protein O-glycosylation is the attachment of carbohydrate structures to the oxygen atom in the hydroxyl group of Serine and Threonine residues. This post-translational modification is commonly found on the majority of proteins trafficking through the secretory pathway and is reported to influence protein characteristics such as folding, secretion, stability, solubility, oligomerization and intracellular localization. In addition, O-glycosylation is essential for cell-cell interactions, protein-protein interactions and many biological processes, such as stress response, immunization, phosphorylation, ubiquitination, cell division, metabolism and cell signaling. The availability of sequenced genomes and genetic tools to create mutants with clear phenotypes makes insects an interesting model system to study O-glycosylation. In this review, we provide an overview of the current knowledge of O-glycosylation, mainly obtained from the model organism Drosophila melanogaster, with a focus on the synthesis and biological roles of the common O-glycans in insects.  相似文献   
105.
Three bacterial enrichment cultures (ECs) were isolated from the digestive tract of Pacific white shrimp Penaeus vannamei, by growing the shrimp microbial communities in a mixture of N-acyl homoserine lactone (AHL) molecules. The ECs, characterized by denaturing gradient gel electrophoresis analysis and subsequent rRNA sequencing, degraded AHL molecules in the degradation assays. Apparently, the resting cells of the ECs also degraded one of the three types of quorum-sensing signal molecules produced by Vibrio harveyi in vitro [i.e. harveyi autoinducer 1 (HAI-1)]. The most efficient AHL-degrading ECs, EC5, was tested in Brachionus experiments. EC5 degraded the V. harveyi HAI-1 autoinducer in vivo, neutralizing the negative effect of V. harveyi autoinducer 2 (AI-2) mutant, in which only the HAI-1- and CAI-1-mediated components of the quorum-sensing system are functional on the growth of Brachionus. This suggests that EC5 interferes with HAI-1-regulated metabolism in V. harveyi. These AHL-degrading ECs need to be tested in other aquatic systems for their probiotic properties, preferably in combination with specific AI-2-degrading bacteria.  相似文献   
106.
The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as "Weissella ghanaensis," was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named "Acetobacter senegalensis" (A. tropicalis-like) and "Acetobacter ghanaensis" (A. syzygii-like).  相似文献   
107.
The OH N O H+N hydrogen bonds formed between tyrosine and lysine, and between glutamic acid and lysine residues are studied by infrared spectroscopy considering the following systems: (l-lys)n + phenol, copoly (l-lys, l-tyr)n, (l-lys)n + (l-tyr)n and (l-lys)n + (l-glu)n. The phenol-lysine hydrogen bonds are largely symmetrical in the average if the pKa of the protonated lysine is 2.2 units larger than that of the phenols. In the case of the hydrogen bonds between tyrosine and lysine residues in copoly (l-lys, l-tyr)n and (l-lys)n + (l-tyr)n, the weight of the proton limiting structure OH N is 80–90%, and that of the polar O H+N structure 10–20%. Double minimum proton potentials occur but the proton is preferentially present at the tyrosine residues. In the (l-lys)n + (l-glu)n system, the protons are present at the lysine residues. Thus, these hydrogen bonds have very large dipole moments (about 10 D). With the lysine-phenole hydrogen bonds, hydration shifts the proton transfer equilibrium a little in favour of the polar proton limiting structure O H+N. These hydrogen bonds are broken to a large extent, however, when only about 3 water molecules are present per lysine residue. When less water is present, as in the copoly (l-lys, l-tyr)n and (l-lys)n + (l-tyr)n systems, these hydrogen bonds are, however, formed quantitatively. Thus — as discussed in this paper — the tyrosine-lysine hydrogen bonds can participate in proton conducting hydrogen bonded systems — as, for instance, present in bacteriorhodopsin — performing the proton transport through hydrophobic regions of biological membranes.  相似文献   
108.
TGF-β family ligands are involved in a variety of critical physiological processes. For instance, the TGF-β ligand myostatin is a staunch negative regulator of muscle growth and a therapeutic target for muscle-wasting disorders. Therefore, it is important to understand the molecular mechanisms of TGF-β family regulation. One form of regulation is through inhibition by extracellular antagonists such as the follistatin (Fst)-type proteins. Myostatin is tightly controlled by Fst-like 3 (Fstl3), which is the only Fst-type molecule that has been identified in the serum bound to myostatin. Here, we present the crystal structure of myostatin in complex with Fstl3. The structure reveals that the N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A, because it utilizes different surfaces on the ligand. This results in conformational differences in the ND of Fstl3 that alter its position in the type I receptor-binding site of the ligand. We also show that single point mutations in the ND of Fstl3 are detrimental to ligand binding, whereas corresponding mutations in Fst have little effect. Overall, we have shown that the NDs of Fst-type molecules exhibit distinctive modes of ligand binding, which may affect overall affinity of ligand·Fst-type protein complexes.  相似文献   
109.
Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease.  相似文献   
110.
“Mutual” amino acid catalysis of glycine on the formation of ditryptophan, dilysine, and diserine in the prebiotically relevant Salt-Induced Peptide Formation (SIPF) Reaction was investigated varying the starting concentration and chirality of the educt amino acid, and analyzing the increase of yield resulting from this catalytic effect. Our results show the possibility of an amplified diverse pool of peptides being available for chemical evolution of larger peptides and proteins using also these more complicated amino acids for the evolution of more complex functions in future biochemical cycles and thus for the emergence of life. Catalytic effects are especially high in the case of serine, the most basic amino acid of the three, but are also significant for the other two examples investigated in the present work. Besides that, especially for serine, but also in the case of tryptophan, differences in catalytic yield increase according to the chiral form of the amino acid used could be observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号