首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   26篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   8篇
  2017年   5篇
  2016年   11篇
  2015年   5篇
  2014年   8篇
  2013年   13篇
  2012年   16篇
  2011年   11篇
  2010年   16篇
  2009年   17篇
  2008年   16篇
  2007年   8篇
  2006年   8篇
  2005年   13篇
  2004年   8篇
  2003年   11篇
  2002年   12篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   7篇
  1991年   3篇
  1989年   2篇
  1988年   4篇
  1986年   2篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1968年   2篇
  1967年   4篇
  1918年   1篇
  1916年   1篇
  1914年   1篇
  1912年   1篇
  1911年   2篇
  1905年   1篇
排序方式: 共有305条查询结果,搜索用时 15 毫秒
11.
Biodiversity of ecological communities has been examined widely. However, comparisons of observed species richness are limited because they fail to reveal what part of the differences are caused by natural variation in species pool size and what part is due to dark diversity – the absence of suitable species from a species pool. In other words, conventional biodiversity inventories do not convey information about how complete local plant communities are. We therefore propose the community completeness concept – a new perspective on the species pool framework. In order to ascertain community completeness, we need to estimate the extent of dark diversity, for which several methods are under development. We recommend the Community Completeness Index based on a log-ratio (or logistic) expression: ln(observed richness/dark diversity). This metric offers statistical advantages over other methods (e.g. the proportion of observed richness from the species pool). We discuss how community completeness can be related to long-term and successional community stability, landscape properties and disturbance patterns as well as to a variety of biotic interactions within and among trophic levels. The community completeness concept is related to but distinctive from the alpha-beta-gamma diversity approach and the community saturation phenomenon. The Community Completeness Index is a valuable metric for comparing biodiversity of different ecosystems for nature conservation. It can be used to measure the success of ecological restoration and vulnerability to invasion by alien species. In summary, community completeness is an interface between observed local observed species richness and dark diversity, which can be useful both in theoretical and applied biodiversity research.  相似文献   
12.
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.  相似文献   
13.
Zobel  Donald B.  Antos  Joseph A.  Fischer  Dylan G. 《Plant Ecology》2022,223(4):381-396

Several processes bury plants, but sediment can also be subsequently removed, often by delayed erosion. Thus, the ability to survive multiple years of burial and to respond when released are important to vegetation changes and population dynamics. We experimentally evaluated the effects of delayed removal of tephra (aerially transported volcanic ejecta) in an old-growth forest understory near Mount St. Helens, using 1-m2 plots assigned to three treatments: tephra removed 4 months after deposition (50 plots), tephra removed 28 months after deposition (the delayed erosion treatment, 50 plots), and undisturbed, natural tephra (100 plots). Prior to tephra removal, species density, cover, shoot density, and shoot size in the delayed erosion treatment were all similar to values in natural plots and significantly less than values in plots cleared initially, indicating that 24 months of additional burial adversely affected understory plants. However, all attributes eventually approached pre-eruption values for shrubs and herbs, indicating that erosion greatly facilitated vegetation recovery. Responses varied substantially among species and growth forms. Overall, our experimental results indicate that some plants of most species can respond effectively after release from burial of at least three growing seasons. In addition, the delay of erosion retards ecosystem recovery relative to early erosion, facilitates recovery relative to no erosion, and modifies the trajectory of post-disturbance vegetation change.

  相似文献   
14.
15.
The biomass allocation pattern in plants is known to depend on the below and above-ground resource availabilities. In a herbaceous multi-species stand, it can be expected that the effects of nutrient and light availability on plants’ general space-use strategy are fundamentally different. We hypothesized that nutrient status alters the amount of biomass produced per unit canopy volume (biomass density), but not so much the biomass vertical distribution pattern. Changes in light availability, in contrast, should affect the vertical distribution pattern of biomass but not biomass density. We were also interested in whether the effect of resource manipulation on a plant’s space-use strategy depends on its basic morphological characteristics (growth form). The results from a four-year permanent plot experiment in a species-rich grassland, with fertilization and additional illumination from mirrors applied to 40 × 40 cm plots, showed that our main hypothesis was correct. Fertilization significantly affected biomass density above as well as below-ground, while additional illumination generally did not. Light addition altered the vertical distribution pattern of above-ground biomass, which remained unaffected by the fertilizer treatment.  相似文献   
16.
Synthesis of phosphoramidate protides of carbocyclic D- and L-2',3'-dideoxy-2',3'-didehydro-7-deazaadenosine by treatment of the nucleoside with phosphorochloridates in the presence of pyridine and t-BuMgCl is described. Several of these protides showed significantly improved antiviral potency over the parent nucleosides against both HIV and HBV.  相似文献   
17.
Glucose oxidase (E.C 1.1.3.4) immobilized onto activated surface of mica was analyzed by enzymatic kinetics and visualization with atomic force microscopy (AFM). The activity of the immobilized enzyme decreased with the decrease of concentration of gamma-aminopropyltrimethoxysilane used for the first step of activation of mica, while AFM analysis showed similar homogeneous filling of the surface with the enzyme. The comparison of enzyme activity with its surface filling revealed that there has to be additional vertical structures, which cannot be visualized by the methods of AFM. The simultaneous decrease of the silanizing agent and the concentration of the enzyme led to molecular resolution for the enzyme on the surface of mica. This allows to propose the described method also for analyzing other surfaces of solid materials with coupled biomolecules.  相似文献   
18.
Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.  相似文献   
19.
Human IgG2 antibodies may exist in at least three distinct structural isomers due to disulfide shuffling within the upper hinge region. Antibody interactions with Fc gamma receptors and the complement component C1q contribute to immune effector functions. These interactions could be impacted by the accessibility and structure of the hinge region. To examine the role structural isomers may have on effector functions, a series of cysteine to serine mutations were made on a human IgG2 backbone. We observed structural homogeneity with these mutants and mapped the locations of their disulfide bonds. Importantly, there was no observed difference in binding to any of the Fc gamma receptors or C1q between the mutants and the wild‐type IgG2. However, differences were seen in the apparent binding affinity of these antibodies that were dependent on the selection of the secondary detection antibody used.  相似文献   
20.

Introduction  

Previous studies have provided inconsistent results on whether variants in the MBL2 gene, coding for the complement-activating mannan-binding lectin (MBL) protein, associate with rheumatoid arthritis (RA). We re-evaluated this in context of the main environmental and genetic risk factors (smoking, HLA-DRB1 'shared epitope' (SE), PTPN22*620W), which predispose to rheumatoid factor (RF) and/or anti-citrullinated-protein antibody (ACPA)-positive RA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号