全文获取类型
收费全文 | 6855篇 |
免费 | 442篇 |
国内免费 | 9篇 |
专业分类
7306篇 |
出版年
2023年 | 50篇 |
2022年 | 79篇 |
2021年 | 139篇 |
2020年 | 126篇 |
2019年 | 93篇 |
2018年 | 208篇 |
2017年 | 190篇 |
2016年 | 261篇 |
2015年 | 317篇 |
2014年 | 365篇 |
2013年 | 507篇 |
2012年 | 510篇 |
2011年 | 551篇 |
2010年 | 345篇 |
2009年 | 275篇 |
2008年 | 401篇 |
2007年 | 399篇 |
2006年 | 348篇 |
2005年 | 307篇 |
2004年 | 288篇 |
2003年 | 277篇 |
2002年 | 243篇 |
2001年 | 93篇 |
2000年 | 82篇 |
1999年 | 76篇 |
1998年 | 58篇 |
1997年 | 40篇 |
1996年 | 32篇 |
1995年 | 38篇 |
1994年 | 44篇 |
1993年 | 21篇 |
1992年 | 41篇 |
1991年 | 27篇 |
1990年 | 38篇 |
1989年 | 34篇 |
1988年 | 24篇 |
1987年 | 20篇 |
1986年 | 23篇 |
1985年 | 26篇 |
1984年 | 42篇 |
1983年 | 19篇 |
1982年 | 21篇 |
1981年 | 29篇 |
1980年 | 24篇 |
1979年 | 18篇 |
1978年 | 12篇 |
1977年 | 16篇 |
1975年 | 10篇 |
1972年 | 10篇 |
1971年 | 10篇 |
排序方式: 共有7306条查询结果,搜索用时 13 毫秒
81.
Armando Méndez-Garrido Maricarmen Hernández-Rodríguez Rafael Zamorano-Ulloa José Correa-Basurto Jessica Elena Mendieta-Wejebe Daniel Ramírez-Rosales Martha Cecilia Rosales-Hernández 《Neurochemical research》2014,39(11):2093-2104
It is well known that the principal biomolecules involved in Alzheimer’s disease (AD) are acetylcholinesterase (AChE), acetylcholine (ACh) and the amyloid beta peptide of 42 amino acid residues (Aβ42). ACh plays an important role in human memory and learning, but it is susceptible to hydrolysis by AChE, while the aggregation of Aβ42 forms oligomers and fibrils, which form senile plaques in the brain. The Aβ42 oligomers are able to produce hydrogen peroxide (H2O2), which reacts with metals (Fe2+, Cu2+, Cr3+, Zn2+, and Cd2+) present at high concentrations in the brain of AD patients, generating the hydroxyl radical (·OH) via Fenton (FR) and Fenton-like (FLR) reactions. This mechanism generates high levels of free radicals and, hence, oxidative stress, which has been correlated with the generation and progression of AD. Therefore, we have studied in vitro how AChE catalytic activity and ACh levels are affected by the presence of metals (Fe3+, Cu2+, Cr3+, Zn2+, and Cd2+), H2O2 (without Aβ42), and · OH radicals produced from FR and FLR. The results showed that the H2O2 and the metals do not modify the AChE catalytic activity, but the ·OH radical causes a decrease in it. On the other hand, metals, H2O2 and ·OH radicals, increase the ACh hydrolysis. This finding suggests that when H2O2, the metals and the ·OH radicals are present, both, the AChE catalytic activity and ACh levels diminish. Furthermore, in the future it may be interesting to study whether these effects are observed when H2O2 is produced directly from Aβ42. 相似文献
82.
Mario Pagano J. Dedrick Jordan Susana R. Neves Tracy Nguyen Ravi Iyengar 《Cellular signalling》2008,20(6):1190-1197
The Gs and Gi pathways interact to control the levels of intracellular cAMP. Although coincident signaling through Gs and Gi-coupled receptors can attenuate Gs-stimulated cAMP levels, it is not known if prior activation of the Gi pathway can affect signaling by Gs-coupled receptors. We have found that activated Gαo/i interact with RGS20, a GTPase activating protein for members of the Gαο/i family. Interaction between Gαo/i and RGS20 results in decreased cellular levels of RGS20. This decrease was induced by activated Gαo and Gαi2 but not by Gαq, Gαi1 or Gαi3. The Gαo/i-induced decrease in RGS20 can be blocked by proteasomal inhibitors lactacystin or MG132. Activated Gαo stimulates the ubiquitination of RGS20. The serotonin-1A receptor that couples to Go/i reduces the levels of RGS20 and this effect is blocked by lactacystin, suggesting that Go/i promotes the degradation of RGS20. Expression of RGS20 attenuates the inhibition of β-adrenergic receptor-induced cAMP levels mediated by the serotonin-1A receptor. Prior activation of the serotonin-1A receptor results in loss of the RGS20-mediated attenuation, and the loss of attenuation is blocked when lactacystin is included during the prior treatment. These observations suggest that Go/i-coupled receptors, by stimulating the degradation of RGS20, can regulate how subsequent activation of the Gs and Gi pathways controls cellular cAMP levels, thus allowing for signal integration. 相似文献
83.
BACKGROUND AND AIMS: The genus Melocactus comprises 36 species of globose cacti with the most derived traits in the Cereeae tribe. It is the proper study system to examine what are the most derived reproductive strategies within that tribe. This study aims to characterize the reproductive biology and to estimate the mating system parameters of two Andean melocacti, Melocactus schatzlii and M. andinus. METHODS: The reproductive attributes of the two species were described, including floral morphology, anthesis patterns, floral rewards, floral visitors and visitation patterns. Levels of self-compatibility and autonomous self-pollination were estimated by hand-pollination experiments. Mating system estimates were obtained by conducting progeny array analyses using isozymes. KEY RESULTS: The flowers of the two species present the typical hummingbird-pollination syndrome. Despite their morphological resemblance, the two species differ in flower size, pollen and ovule production and anthesis pattern. Their main pollinator agents are hummingbirds, four species in M. schatzlii and one species in M. andinus. Both cacti are self-compatible and capable of self-pollination without the aid of pollen vectors. Population-level outcrossing rate was higher for M. schatzlii (t(m)=0.9) than for M. andinus (t(m)=0.4). At the family level, outcrossing rates for most mothers of M. schatzlii were higher (t(m)>0.8) than for M. andinus (t(m)<0.5). CONCLUSIONS: Although the two cacti are capable of selfing, M. schatzlii is a predominantly outcrossing species, while M. andinus behaves as a mixed-mating cactus. Hummingbirds are the only pollinators responsible for outcrossing and gene flow events in these species. In their absence, both melocacti set seeds by selfing. Based on its low population size, restricted distribution in Venezuela, low rates of floral visits, and high levels of inbreeding, M. andinus is considered to be an endangered species deserving further study to define its conservation status. 相似文献
84.
J. Sundaramoorthi C. Babu Sundaram Ganesh Ram 《Plant Systematics and Evolution》2009,279(1-4):115-123
The objective of the present investigation was to assess the genetic relationships among the species of Oryza that belong to the primary gene pool (sativa complex) and the secondary gene pool (officinalis complex) using three marker systems such as RAPDs, ISSRs and SSRs. A total of 432 clear and reproducible bands were amplified from 18 RAPD primers; 113 bands were detected from 8 ISSR primers and 78 alleles were found to be amplified across the Oryza species from 13 SSR primer pairs. All the three dendrograms constructed, using UPGMA from the genetic similarity matrices based on the three marker data sets, were similar in their groupings. In all the three trees, two accessions of Oryza sativa formed an exclusive group indicating its genomic differentiation from its wild ancestors through the process of domestication. Distinctness between the wild species of the sativa and officinalis complexes was evident in all the trees derived from different markers. The groupings obtained among the species of the sativa complex were in perfect concordance with the species relationships established through classical crossability and cytogenetic analysis. This study has brought out some information on the species relationship between the diploid and tetraploid genomes of the officinalis complex possessing BB, CC and DD genomes. The higher level of similarity observed between the species possessing C and D genomes supports the view of many earlier authors that these two genomes might have originated from a single hybridization event. The results of this study also show that the diploid species possessing C genomes such as Oryza officinalis, Oryza rhizomatis and Oryza eichingeri are distinct from their allotetraploid counterparts possessing BBCC and CCDD genomes indicating a wider genomic differentiation in their evolutionary process. 相似文献
85.
Frago S Goñi G Herguedas B Peregrina JR Serrano A Perez-Dorado I Molina R Gómez-Moreno C Hermoso JA Martínez-Júlvez M Mayhew SG Medina M 《Archives of biochemistry and biophysics》2007,467(2):206-217
Contribution of three regions (phosphate-binding, 50’s and 90’s loops) of Anabaena apoflavodoxin to FMN binding and reduction potential was studied. Thr12 and Glu16 did not influence FMN redox properties, but Thr12 played a role in FMN binding. Replacement of Trp57 with Glu, Lys or Arg moderately shifted Eox/sq and Esq/hq and altered the energetic of the FMN redox states binding profile. Our data indicate that the side chain of position 57 does not modulate Eox/sq by aromatic stacking or solvent exclusion, but rather by influencing the relative strength of the H-bond between the N(5) of the flavin and the Asn58-Ile59 bond. A correlation was observed between the isoalloxazine increase in solvent accessibility and less negative Esq/hq. Moreover, Esq/hq became less negative as positively charged residues were added near to the isoalloxazine. Ile59 and Ile92 were simultaneously mutated to Ala or Glu. These mutations impaired FMN binding, while shifting Esq/hq to less negative values and Eox/sq to more negative. These effects are discussed on the bases of the X-ray structures of some of the Fld mutants, suggesting that in Anabaena Fld the structural control of both electron transfer steps is much more subtle than in other Flds. 相似文献
86.
The use of new transgenic yeasts in industry carries a potential environmental risk because their dispersal, introducing new artificial genetic combinations into nature, could have unpredictable consequences. This risk could be avoided by using sterile transgenic yeasts that are unable to sporulate and mate with wild yeasts. These sterile yeasts would not survive the annual cyclic harvesting periods, being condemned to disappear in the wineries and vineyards in less than a year. We have constructed new ime1Delta wine yeasts that are unable to sporulate and mate, bear easy-to-detect genetic markers, and quickly disappear in grape must fermentation immediately after sporulation of the yeast population. These sterile yeasts maintained the same biotechnological properties as their parent yeasts without any detectable deleterious effect of the ime1Delta mutation. These yeasts are therefore interesting biotechnologically for food industry applications and for genetically modified microorganism environmental monitoring studies. 相似文献
87.
SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N)) to O(N2), where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N) by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used. 相似文献
88.
89.
Mueller JL Ravi Ram K McGraw LA Bloch Qazi MC Siggia ED Clark AG Aquadro CF Wolfner MF 《Genetics》2005,171(1):131-143
Drosophila melanogaster males transfer seminal fluid proteins along with sperm during mating. Among these proteins, ACPs (Accessory gland proteins) from the male's accessory gland induce behavioral, physiological, and life span reduction in mated females and mediate sperm storage and utilization. A previous evolutionary EST screen in D. simulans identified partial cDNAs for 57 new candidate ACPs. Here we report the annotation and confirmation of the corresponding Acp genes in D. melanogaster. Of 57 new candidate Acp genes previously reported in D. melanogaster, 34 conform to our more stringent criteria for encoding putative male accessory gland extracellular proteins, thus bringing the total number of ACPs identified to 52 (34 plus 18 previously identified). This comprehensive set of Acp genes allows us to dissect the patterns of evolutionary change in a suite of proteins from a single male-specific reproductive tissue. We used sequence-based analysis to examine codon bias, gene duplications, and levels of divergence (via dN/dS values and ortholog detection) of the 52 D. melanogaster ACPs in D. simulans, D. yakuba, and D. pseudoobscura. We show that 58% of the 52 D. melanogaster Acp genes are detectable in D. pseudoobscura. Sequence comparisons of ACPs shared and not shared between D. melanogaster and D. pseudoobscura show that there are separate classes undergoing distinctly dissimilar evolutionary dynamics. 相似文献
90.
The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity 下载免费PDF全文
Cruz-Ramírez A López-Bucio J Ramírez-Pimentel G Zurita-Silva A Sánchez-Calderon L Ramírez-Chávez E González-Ortega E Herrera-Estrella L 《The Plant cell》2004,16(8):2020-2034
Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. 相似文献