首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1217篇
  免费   149篇
  1366篇
  2023年   6篇
  2022年   12篇
  2021年   25篇
  2020年   16篇
  2019年   23篇
  2018年   27篇
  2017年   19篇
  2016年   44篇
  2015年   60篇
  2014年   72篇
  2013年   94篇
  2012年   108篇
  2011年   90篇
  2010年   65篇
  2009年   44篇
  2008年   76篇
  2007年   58篇
  2006年   41篇
  2005年   57篇
  2004年   58篇
  2003年   60篇
  2002年   57篇
  2001年   15篇
  2000年   23篇
  1999年   16篇
  1998年   12篇
  1997年   13篇
  1996年   7篇
  1995年   5篇
  1993年   8篇
  1992年   11篇
  1991年   6篇
  1990年   12篇
  1989年   6篇
  1988年   5篇
  1987年   12篇
  1986年   4篇
  1985年   5篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1979年   8篇
  1978年   3篇
  1977年   9篇
  1976年   3篇
  1974年   3篇
  1971年   3篇
  1968年   4篇
  1932年   3篇
  1929年   3篇
排序方式: 共有1366条查询结果,搜索用时 15 毫秒
71.
An embryo-defective mutant of Arabidopsis thaliana was isolated that arrests development at a variety of stages, from as early as the globular stage of embryogenesis to as late as formation of an abnormal bent cotyledon stage embryo. Defects in the suspensor, a normally transient structure derived from the fertilized egg, were often associated with the arrested embryo. The lesion was within a gene encoding a protein with domains characteristic of lariat debranching enzymes, which has been named AtDBR1 (for Arabidopsis thaliana Debranching enzyme 1). Cleavage of the 2'-5'-phosphodiester bond found in excised intron lariats ("debranching") is essential for turnover of intronic sequences as well as generation of some small nucleolar RNAs. The mutation within AtDBR1 was confirmed by complementation as being responsible for the embryo-lethal phenotype, and the activity of the encoded protein in cleavage of 2'-5'-phosphodiester bonds was verified using an in vitro debranching assay.  相似文献   
72.
Perturbation in the Dystroglycan (Dg)-Dystrophin (Dys) complex results in muscular dystrophies and brain abnormalities in human. Here we report that Drosophila is an excellent genetically tractable model to study muscular dystrophies and neuronal abnormalities caused by defects in this complex. Using a fluorescence polarization assay, we show a high conservation in Dg-Dys interaction between human and Drosophila. Genetic and RNAi-induced perturbations of Dg and Dys in Drosophila cause cell polarity and muscular dystrophy phenotypes: decreased mobility, age-dependent muscle degeneration and defective photoreceptor path-finding. Dg and Dys are required in targeting glial cells and neurons for correct neuronal migration. Importantly, we now report that Dg interacts with insulin receptor and Nck/Dock SH2/SH3-adaptor molecule in photoreceptor path-finding. This is the first demonstration of a genetic interaction between Dg and InR.  相似文献   
73.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   
74.
The divergence of sequence and expression pattern of duplicated genes provides a means for genetic innovation to occur without sacrificing an essential function. The cpx1 and cpx2 genes of maize are a singular example of duplicated genes that have diverged by deletion and creation of protein targeting information. The cpx genes encode coproporphyrinogen III oxidase ('coprogen oxidase'), which catalyzes a step in the synthesis of chlorophyll and heme. In plants, this enzyme has been found exclusively in the plastids. The cpx1 and cpx2 genes encode almost identical, catalytically active enzymes with distinctive N-terminal peptide sequences. The cpx1 gene encodes the expected plastid transit peptide, but this region is deleted from the cpx2 gene. While the 5' regions of both messenger RNAs are highly similar, the cpx2 gene has an open-reading frame that could encode a new targeting signal. GFP fused with CPX1 localized to the plastids. In contrast, the GFP fusion with CPX2 did not target plastids and appeared to localize to mitochondria. Both cpx genes are expressed ubiquitously but, based on mutant phenotype, they seem to have discrete biological roles. Seedlings homozygous for a null mutation in the cpx1 gene completely lack chlorophyll and develop necrotic lesions in the light. However, the mutant seedlings and callus cultures will grow in tissue culture in the dark, implying that they retain a capacity to produce heme. We discuss models for the evolution of the cpx genes and possible roles of mitochondrion-localized coprogen oxidase activity in maize.  相似文献   
75.
Wolverines (Gulo gulo) in the conterminous United States have experienced range contraction, are uncommon, and have been designated as warranted for protection under the United States Endangered Species Act. Data from the southern edge of the wolverine's circumpolar distribution is sparse, and development of effective conservation strategies would benefit from a more complete understanding of the species' ecology. We captured and radio-monitored 30 wolverines in the Greater Yellowstone Ecosystem (GYE), tested for seasonal habitat selection by elevation band, and examined a suite of spatial characteristics to clarify our understanding of the wolverine's niche. Wolverines in GYE selected for areas >2,600 m latitude-adjusted elevation (LAE; n = 2,257 wolverine locations [12 F, 6 M]). Wolverines avoided areas <2,150 m LAE, including during winter when the vast majority of ungulates are pushed to these elevations by deep snow. Wolverine home ranges were large relative to body size, averaging 303 km2 for adult females and 797 km2 for adult males (n = 13 [8 F, 5 M] and 33 wolverine-years). Resident adults fit with Global Positioning System (GPS) collars used an area >75% the size of their multi-year home range in an average of 32 days (n = 7 [5 F, 2 M]). Average movement rates of 1.3 km/2-hr indicated that both sexes move distances equivalent to the diameter of their home range every 2 days or the circumference of their home range in <1 week (n = 1,329 2-hr movements, n = 12 individuals [7 F, 5 M]). This capability for movement, the short time-frame over which home ranges were developed, and a lack of home range overlap by same sex adults ( , 90% CI = 0.0–4.8%, n = 22 pairs) suggested territoriality. We estimated wolverine density to be 3.5/1,000 km2 of area >2,150 m LAE (95% CI = 2.8–9.6). Dispersal movements extended to at least 170 km for both sexes (n = 5 F, 2 M). At the southern edge of distribution, where suitable and unsuitable conditions exist in close proximity, wolverines selected high-elevation areas near alpine tree-line where a mix of forest, meadow, and boulder fields were present, deep snow-cover existed during winter, and low temperatures near freezing can occur throughout the year. Persistence in these areas where the growing season is brief requires large home ranges that are regularly patrolled, a social system that provides exclusive access to resources, and low densities. These characteristics, along with low reproductive rates, are prevalent throughout the species range, indicating that wolverines are specialists at exploiting a cold, unproductive niche where interspecific competition is limited. The vulnerability inherent in occupying this unproductive niche was likely influential in previous declines within the conterminous United States and will remain a factor as wolverines encounter modern human influences. Conserving wolverines in the conterminous United States will require collaborative management over a large geographic scale. © 2011 The Wildlife Society.  相似文献   
76.
The freeze tolerance and accumulation of cryoprotectants was investigated in three geographically different populations of the enchytraeid Enchytraeus albidus (Oligochaeta). E. albidus is widely distributed from the high Arctic to temperate Western Europe. Our results show that E. albidus is freeze tolerant, with freeze tolerance varying extensively between Greenlandic and European populations. Two populations from sub Arctic (Nuuk) and high Arctic Greenland (Zackenberg) survived freezing at −15 °C, whereas only 30% of a German population survived this temperature. When frozen, E. albidus responded by catabolising glycogen to glucose, which likely acted as a cryoprotectant. The average glucose concentrations were similar in the three populations when worms were frozen at −2 °C, approximately 50 μg glucose mg−1 tissue dry weight (DW). At −14 °C the glucose concentrations increased to between 110 and 170 μg mg−1 DW in worms from Greenland. The average glycogen content of worms from Zackenberg and Nuuk were about 300 μg mg−1 DW, but only 230 μg mg−1 DW in worms from Germany showing that not all glycogen was catabolised during the experiment. Nuclear magnetic resonance spectrometry (NMR) was used to screen for other putative cryoprotectants. Proline, glutamine and alanine were up regulated in frozen worms at −2 °C but only in relatively small concentrations suggesting that they were of little significance for freeze survival. The present study confirms earlier reports that freeze tolerant enchytraeids, like other freeze tolerant oligochaete earthworms, accumulate high concentrations of glucose as a primary cryoprotectant.  相似文献   
77.
78.
79.
ABSTRACT We examined variation in persistence rates of waterfowl carcasses placed along a series of transects in tundra habitats in western Alaska. This study was designed to assess the effects of existing tower structures and was replicated with separate trials in winter, summer and fall as both the resident avian population and the suite of potential scavengers varied seasonally. Carcass persistence rates were uniformly low, with <50% of carcasses persisting for more than a day on average. Persistence rate varied by carcass age, carcass size, among transects and was lowest in the fall and highest in the summer. We found little support for models where persistence varied in relation to the presence of tower structures. We interpret this as evidence that scavengers were not habituated to searching for carcasses near these structures. Our data demonstrate that only a small fraction of bird carcasses are likely to persist between searches, and if not appropriately accounted for, scavenging bias could significantly influence bird mortality estimates. The variation that we documented suggests that persistence rates should not be extrapolated among tower locations or across time periods as the variation in carcass persistence will result in biased estimates of total bird strike mortality.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号