首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1120篇
  免费   114篇
  1234篇
  2023年   6篇
  2022年   12篇
  2021年   25篇
  2020年   17篇
  2019年   23篇
  2018年   25篇
  2017年   20篇
  2016年   47篇
  2015年   58篇
  2014年   68篇
  2013年   93篇
  2012年   95篇
  2011年   94篇
  2010年   58篇
  2009年   39篇
  2008年   69篇
  2007年   56篇
  2006年   42篇
  2005年   50篇
  2004年   52篇
  2003年   53篇
  2002年   53篇
  2001年   12篇
  2000年   13篇
  1999年   13篇
  1998年   12篇
  1997年   11篇
  1996年   8篇
  1995年   6篇
  1993年   11篇
  1992年   9篇
  1991年   4篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   6篇
  1979年   7篇
  1977年   5篇
  1976年   2篇
  1964年   2篇
  1944年   2篇
  1932年   3篇
  1931年   2篇
  1929年   3篇
  1920年   2篇
排序方式: 共有1234条查询结果,搜索用时 15 毫秒
31.
The landscape genetics framework is typically applied to broad regions that occupy only small portions of a species’ range. Rarely is the entire range of a taxon the subject of study. We examined the landscape genetic structure of the endangered Point Arena mountain beaver (Aplodontia rufa nigra), whose isolated geographic range is found in a restricted (85 km2) but heterogenous region in California. Based on its diminutive range we may predict widespread gene flow and a relatively weak role for landscape variation in defining genetic structure. We used skin, bone, tissue and noninvasively collected hair samples to describe genetic substructure and model gene flow. We examined spatial partitioning of multilocus DNA genotypes and mitochondrial DNA haplotypes. We identified 3 groups from microsatellite data, all of which had low estimates of effective population size consistent with significant tests for historical bottlenecks. We used least-cost-path analysis with the microsatellites to examine how vegetation type affects gene flow in a landscape genetics framework. Gene flow was best predicted by a model with “Forest” as the most permeable, followed by “Riparian”. Agricultural lands demonstrated the highest resistance. MtDNA data revealed only two haplotypes: one was represented in all 57 individuals that occurred north of the east–west flowing Garcia River. South of the river, however, both haplotypes occurred, often at the same site suggesting that the river may have affected historical patterns of genetic divergence.  相似文献   
32.
33.
Previous studies have demonstrated that the murine coronavirus mouse hepatitis virus (MHV) nonstructural protein 2 (ns2) is a 2′,5′-phosphodiesterase that inhibits activation of the interferon-induced oligoadenylate synthetase (OAS)-RNase L pathway. Enzymatically active ns2 is required for efficient MHV replication in macrophages, as well as for the induction of hepatitis in C57BL/6 mice. In contrast, following intranasal or intracranial inoculation, efficient replication of MHV in the brain is not dependent on an enzymatically active ns2. The replication of wild-type MHV strain A59 (A59) and a mutant with an inactive phosphodiesterase (ns2-H126R) was assessed in primary hepatocytes and primary central nervous system (CNS) cell types—neurons, astrocytes, and oligodendrocytes. A59 and ns2-H126R replicated with similar kinetics in all cell types tested, except macrophages and microglia. RNase L activity, as assessed by rRNA cleavage, was induced by ns2-H126R, but not by A59, and only in macrophages and microglia. Activation of RNase L correlated with the induction of type I interferon and the consequent high levels of OAS mRNA induced in these cell types. Pretreatment of nonmyeloid cells with interferon restricted A59 and ns2-H126R to the same extent and failed to activate RNase L following infection, despite induction of OAS expression. However, rRNA degradation was induced by treatment of astrocytes or oligodendrocytes with poly(I·C). Thus, RNase L activation during MHV infection is cell type specific and correlates with relatively high levels of expression of OAS genes, which are necessary but not sufficient for induction of an effective RNase L antiviral response.  相似文献   
34.
The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models.  相似文献   
35.
The immunoglobulin new antigen receptors (IgNARs) are a class of Ig-like molecules of the shark immune system that exist as heavy chain-only homodimers and bind antigens by their single domain variable regions (V-NARs). Following shark immunization and/or in vitro selection, V-NARs can be generated as soluble, stable, and specific high affinity monomeric binding proteins of ∼12 kDa. We have previously isolated a V-NAR from an immunized spiny dogfish shark, named E06, that binds specifically and with high affinity to human, mouse, and rat serum albumins. Humanization of E06 was carried out by converting over 60% of non-complementarity-determining region residues to those of a human germ line Vκ1 sequence, DPK9. The resulting huE06 molecules have largely retained the specificity and affinity of antigen binding of the parental V-NAR. Crystal structures of the shark E06 and its humanized variant (huE06 v1.1) in complex with human serum albumin (HSA) were determined at 3- and 2.3-Å resolution, respectively. The huE06 v1.1 molecule retained all but one amino acid residues involved in the binding site for HSA. Structural analysis of these V-NARs has revealed an unusual variable domain-antigen interaction. E06 interacts with HSA in an atypical mode that utilizes extensive framework contacts in addition to complementarity-determining regions that has not been seen previously in V-NARs. On the basis of the structure, the roles of various elements of the molecule are described with respect to antigen binding and V-NAR stability. This information broadens the general understanding of antigen recognition and provides a framework for further design and humanization of shark IgNARs.  相似文献   
36.
Turkish hamsters (Mesocricetus brandti) are a model organism for studies of hibernation, yet a detailed account of their torpor characteristics has not been undertaken. This study employed continuous telemetric monitoring of body temperature (T b) in hibernating male and female Turkish hamsters at ambient temperatures (T as) of 5 and 13 °C to precisely characterize torpor bout depth, duration, and frequency, as well as rates of entry into and arousal from torpor. Hamsters generated brief intervals of short (<12 h), shallow test bouts (T b > 20 °C), followed by deep torpor bouts lasting 4–6 days at T a = 5 °C and 2–3 days at T a = 13 °C. Females at T a = 5 °C had longer bouts than males, but maintained higher torpor T b; there were no sex differences at T a = 13 °C. Neither body mass loss nor food intake differed between the two T as. Hamsters entered torpor primarily during the scotophase (subjective night), but timing of arousals was highly variable. Hamsters at both T as generated short, shallow torpor bouts between deep bouts, suggesting that this species may be capable of both hibernation and daily torpor.  相似文献   
37.
Ethylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from d-xylose is reported. This route consists of four steps: d-xylose?→?d-xylonate?→?2-dehydro-3-deoxy-d-pentonate?→?glycoaldehyde?→?EG. Respective enzymes, d-xylose dehydrogenase, d-xylonate dehydratase, 2-dehydro-3-deoxy-d-pentonate aldolase, and glycoaldehyde reductase, were assembled. The route was implemented in a metabolically engineered Escherichia coli, in which the d-xylose?→?d-xylulose reaction was prevented by disrupting the d-xylose isomerase gene. The most efficient construct produced 11.7 g?L?1 of EG from 40.0 g?L?1 of d-xylose. Glycolate is a carbon-competing by-product during EG production in E. coli; blockage of glycoaldehyde?→?glycolate reaction was also performed by disrupting the gene encoding aldehyde dehydrogenase, but from this approach, EG productivity was not improved but rather led to d-xylonate accumulation. To channel more carbon flux towards EG than the glycolate pathway, further systematic metabolic engineering and fermentation optimization studies are still required to improve EG productivity.  相似文献   
38.
The endemic occurrence of obesity and the associated risk factors that constitute the metabolic syndrome have been predicted to lead to a dramatic increase in chronic liver disease. Non-alcoholic steatohepatitis (NASH) has become the most frequent liver disease in countries with a high prevalence of obesity. In addition, hepatic steatosis and insulin resistance have been implicated in disease progression of other liver diseases, including chronic viral hepatitis and hepatocellular carcinoma. The molecular mechanisms underlying the link between insulin signaling and hepatocellular injury are only partly understood. We have explored the role of the antiapoptotic caspase-8 homolog cellular FLICE-inhibitory protein (cFLIP) on liver cell survival in a diabetic model with hypoinsulinemic diabetes in order to delineate the role of insulin signaling on hepatocellular survival. cFLIP regulates cellular injury from apoptosis signaling pathways, and loss of cFLIP was previously shown to promote injury from activated TNF and CD95/Apo-1 receptors. In mice lacking cFLIP in hepatocytes (flip−/−), loss of insulin following streptozotocin treatment resulted in caspase- and c-Jun N-terminal kinase (JNK)-dependent liver injury after 21 days. Substitution of insulin, inhibition of JNK using the SP600125 compound in vivo or genetic deletion of the mitogen-activated protein kinase (MAPK)9 (JNK2) in all tissues abolished the injurious effect. Strikingly, the difference in injury between wild-type and cFLIP-deficient mice occurred only in vivo and was accompanied by liver-infiltrating inflammatory cells with a trend toward increased amounts of NK1.1-positive cells and secretion of proinflammatory cytokines. Transfer of bone marrow from rag-1-deficient mice that are depleted from B and T lymphocytes prevented liver injury in flip−/− mice. These findings support a direct role of insulin on cellular survival by alternating the activation of injurious MAPK, caspases and the recruitment of inflammatory cells to the liver. Thus, increasing resistance to insulin signaling pathways in hepatocytes appears to be an important factor in the initiation and progression of chronic liver disease.  相似文献   
39.

Objective:

We have previously shown that racial composition of behavioral intervention groups does not affect achieved weight loss. However, it is unclear if the race of the interventionist affects intervention outcomes. The objective of this analysis is to estimate the impact of race concordance between participant and interventionist on weight change in the initial weight loss phase (phase I) of the Weight Loss Maintenance trial (WLM).

Design and Methods:

A total of 1,685 overweight or obese adults (BMI 25‐45 kg/m2) who were taking medication for hypertension and/or dyslipidemia participated in phase I of the WLM trial. All participants received a 6‐month intensive behavioral intervention in groups of 15‐20 facilitated by a trained interventionist. The main outcome is change in weight at 6 months.

Results:

Participants were on average 55 years of age, 67% female and 44% African American (AA). Three of seventeen interventionists were AA, 14 were non‐AA. Seventy‐three percent of participants shared race concordance with the interventionist. There was a small but statistically significant difference in weight change of participants who were the same race as the interventionist (?5.84 kg, s.e. 0.17) as compared with those who were not race concordant (?5.04 kg, s.e. 0.33), a difference of 0.8 kg, (P = 0.04). The impact of concordance on weight change differed by race (i.e., interaction of race and concordance was significant, P = 0.02).

Conclusions:

In a post hoc analysis of a group‐based behavioral intervention, race concordance for non‐AA participants was associated with slightly greater weight loss. Race concordance was not associated with weight loss for AA participants.
  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号