首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1650篇
  免费   157篇
  1807篇
  2023年   11篇
  2022年   28篇
  2021年   38篇
  2020年   29篇
  2019年   32篇
  2018年   38篇
  2017年   30篇
  2016年   57篇
  2015年   85篇
  2014年   98篇
  2013年   133篇
  2012年   150篇
  2011年   134篇
  2010年   75篇
  2009年   63篇
  2008年   95篇
  2007年   88篇
  2006年   62篇
  2005年   65篇
  2004年   77篇
  2003年   67篇
  2002年   64篇
  2001年   27篇
  2000年   23篇
  1999年   29篇
  1998年   14篇
  1997年   14篇
  1996年   14篇
  1995年   8篇
  1993年   7篇
  1992年   15篇
  1991年   8篇
  1990年   10篇
  1989年   8篇
  1988年   12篇
  1987年   8篇
  1986年   11篇
  1985年   11篇
  1984年   6篇
  1983年   5篇
  1982年   9篇
  1980年   4篇
  1979年   5篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
  1932年   3篇
  1929年   3篇
  1920年   2篇
排序方式: 共有1807条查询结果,搜索用时 15 毫秒
81.
Insulin-resistant states are characterized by hypertriglyceridemia, predominantly because of overproduction of hepatic very low density lipoprotein particles. The additional contribution of intestinal lipoprotein overproduction to the dyslipidemia of insulin-resistant states has not been previously appreciated. Here, we have investigated intestinal lipoprotein production in a fructose-fed hamster model of insulin resistance previously documented to have whole body and hepatic insulin resistance, and hepatic very low density lipoprotein overproduction. Chronic fructose feeding for 3 weeks induced significant oversecretion of apolipoprotein B48 (apoB48)-containing lipoproteins in the fasting state and during steady state fat feeding, based on (a) in vivo Triton WR1339 studies of apoB48 production as well as (b) ex vivo pulse-chase labeling of intestinal enterocytes from fasted and fed hamsters. ApoB48 particle overproduction was accompanied by increased intracellular apoB48 stability, enhanced lipid synthesis, higher abundance of microsomal triglyceride transfer protein mass, and a significant shift toward the secretion of larger chylomicron-like particles. ApoB48 particle overproduction was not observed with short-term fructose feeding or in vitro incubation of enterocytes with fructose. Secretion of intestinal apoB48 and triglyceride was closely linked to intestinal enterocyte de novo lipogenesis, which was up-regulated in fructose-fed hamsters. Inhibition of fatty acid synthesis by cerulenin, a fatty acid synthase inhibitor, resulted in a dose-dependent decrease in intestinal apoB48 secretion. Overall, these findings further suggest that intestinal overproduction of apoB48 lipoproteins should also be considered as a major contributor to the fasting and postprandial dyslipidemia observed in response to chronic fructose feeding and development of an insulin-resistant state.  相似文献   
82.
Unfolding transitions of an intrinsically unstable annexin domain and the unfolded state structure have been examined using multiple approximately 10-ns molecular dynamics simulations. Three main basins are observed in the configurational space: native-like state, compact partially unfolded or intermediate compact state, and the unfolded state. In the native-like state fluctuations are observed that are nonproductive for unfolding. During these fluctuations, after an initial loss of approximately 20% of the core residue native contacts, the core of the protein transiently completely refolds to the native state. The transition from the native-like basin to the partially unfolded compact state involves approximately 75% loss of native contacts but little change in the radius of gyration or core hydration properties. The intermediate state adopts for part of the time in one of the trajectories a novel highly compact salt-bridge stabilized structure that can be identified as a conformational trap. The intermediate-to-unfolded state transition is characterized by a large increase in the radius of gyration. After an initial relaxation the unfolded state recovers a native-like topology of the domain. The simulated unfolded state ensemble reproduces in detail experimental nuclear magnetic resonance data and leads to a convincing complete picture of the unfolded domain.  相似文献   
83.
Robust growth in many bacteria is dependent upon proper regulation of the adaptive response to phosphate (Pi) limitation. This response enables cells to acquire Pi with high affinity and utilize alternate phosphorous sources. The molecular mechanisms of Pi signal transduction are not completely understood. PhoU, along with the high-affinity, Pi-specific ATP-binding cassette transporter PstSCAB and the two-component proteins PhoR and PhoB, is absolutely required for Pi signaling in Escherichia coli. Little is known about the role of PhoU and its function in regulation. We have demonstrated using bacterial two-hybrid analysis and confirmatory coelution experiments that PhoU interacts with PhoR through its PAS (Per-ARNT-Sim) domain and that it also interacts with PstB, the cytoplasmic component of the transporter. We have also shown that the soluble form of PhoU is a dimer that binds manganese and magnesium. Alteration of highly conserved residues in PhoU by site-directed mutagenesis shows that these sites play a role in binding metals. Analysis of these phoU mutants suggests that metal binding may be important for PhoU membrane interactions. Taken together, these results support the hypothesis that PhoU is involved in the formation of a signaling complex at the cytoplasmic membrane that responds to environmental Pi levels.  相似文献   
84.
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca2+-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.  相似文献   
85.
Protocatechuate 4,5-dioxygenase from Pseudomonas testosteroni has been purified to homogeneity and crystallized. The iron containing, extradiol dioxygenase is shown to be composed of two subunit types (alpha, Mr = 17,700 and beta, Mr = 33,800) in a 1:1 ratio; such a composition has not been observed for other extradiol dioxygenases. The 4.2 K M?ssbauer spectrum of native protocatechuate 4,5-dioxygenase prepared from cells grown in 57Fe-enriched media consists of a doublet with quadrupole splitting, delta EQ = 2.22 mm/s, and isomer shift delta Fe = 1.28 mm/s, demonstrating a high spin Fe2+ site. These parameters, and the temperature dependence of delta EQ, are unique among enzymes but are strikingly similar to those reported for the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26, suggesting very similar ligand environments. The Fe2+ of protocatechuate 4,5-dioxygenase can be oxidized, for instance by H2O2, to yield high spin Fe3+ with EPR g values around g = 6 (and g = 4.3). In the oxidized state, protocatechuate 4,5-dioxygenase is inactive; the iron, however, can be rereduced by ascorbate to yield active enzyme. Our data suggest that protocatechuate binds to Fe2+; the spectra indicate that the ligand binding is heterogenous. The M?ssbauer spectra observed here are fundamentally different from those reported earlier (Zabinski, R., Münck, E., Champion, P., and Wood, J. M. (1972) Biochemistry 11, 3212-3219). The spectra of the earlier (reconstituted) preparations, which had substantially lower specific activities, probably reflect adventitiously bound Fe3+. We discuss here how adventitiously bound iron can be identified and removed. The Fe2+ which is present in native protocatechuate 4,5-dioxygenase and its complexes with substrates and inhibitors reacts quantitatively with nitric oxide to produce a species with electronic spin S = 3/2. The EPR and M?ssbauer spectra of these complexes compare favorably with EDTA . Fe(II) . NO. We have studied the latter complex extensively and have analyzed the M?ssbauer spectra with an S = 3/2 spin Hamiltonian. EPR spectra show that protocatechuate 4,5-dioxygenase-NO complexes with substrates or inhibitors are heterogeneous and consist of several well defined subspecies. The data show that NO, and presumably also O2, has access to the active site Fe2+ in the enzyme-substrate complex. The use of EPR-detectable NO complexes as a rapid and sensitive tool for the study of the EPR silent active site iron of extradiol dioxygenases is discussed.  相似文献   
86.
87.
The parasitic protozoa Trypanosoma brucei utilizes a novel cofactor (trypanothione, T(SH)2), which is a conjugate of GSH and spermidine, to maintain cellular redox balance. gamma-Glutamylcysteine synthetase (gamma-GCS) catalyzes the first step in the biosynthesis of GSH. To evaluate the importance of thiol metabolism to the parasite, RNAi methods were used to knock down gene expression of gamma-GCS in procyclic T. brucei cells. Induction of gamma-GCS RNAi with tetracycline led to cell death within 4-6 days post-induction. Cell death was preceded by the depletion of the gamma-GCS protein and RNA and by the loss of the cellular pools of GSH and T(SH)2. The addition of GSH (80 microM) to cell cultures rescued the RNAi cell death phenotype and restored the intracellular thiol pools to wild-type levels. Treatment of cells with buthionine sulfoximine (BSO), an enzyme-activated inhibitor of gamma-GCS, also resulted in cell death. However, the toxicity of the inhibitor was not reversed by GSH, suggesting that BSO has more than one cellular target. BSO depletes intracellular thiols to a similar extent as gamma-GCS RNAi; however, addition of GSH did not restore the pools of GSH and T(SH)2. These data suggest that BSO also acts to inhibit the transport of GSH or its peptide metabolites into the cell. The ability of BSO to inhibit both synthesis and transport of GSH likely makes it a more effective cytotoxic agent than an inhibitor with a single mode of action. Finally the potential for the T(SH)2 biosynthetic enzymes to be regulated in response to reduced thiol levels was studied. The expression levels of ornithine decarboxylase and of S-adenosylmethionine decarboxylase, two essential enzymes in spermidine biosynthesis, remained constant in induced gamma-GCS RNAi cell lines.  相似文献   
88.
Turkish hamsters (Mesocricetus brandti) are a model organism for studies of hibernation, yet a detailed account of their torpor characteristics has not been undertaken. This study employed continuous telemetric monitoring of body temperature (T b) in hibernating male and female Turkish hamsters at ambient temperatures (T as) of 5 and 13 °C to precisely characterize torpor bout depth, duration, and frequency, as well as rates of entry into and arousal from torpor. Hamsters generated brief intervals of short (<12 h), shallow test bouts (T b > 20 °C), followed by deep torpor bouts lasting 4–6 days at T a = 5 °C and 2–3 days at T a = 13 °C. Females at T a = 5 °C had longer bouts than males, but maintained higher torpor T b; there were no sex differences at T a = 13 °C. Neither body mass loss nor food intake differed between the two T as. Hamsters entered torpor primarily during the scotophase (subjective night), but timing of arousals was highly variable. Hamsters at both T as generated short, shallow torpor bouts between deep bouts, suggesting that this species may be capable of both hibernation and daily torpor.  相似文献   
89.
The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007–2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P?<?0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r 2?=?0.73, P?<?0.001, RMSE = 36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.  相似文献   
90.
Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF‐induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an “outside‐in” mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号