首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2555篇
  免费   212篇
  国内免费   1篇
  2768篇
  2023年   13篇
  2022年   44篇
  2021年   73篇
  2020年   31篇
  2019年   43篇
  2018年   51篇
  2017年   53篇
  2016年   89篇
  2015年   162篇
  2014年   154篇
  2013年   176篇
  2012年   249篇
  2011年   229篇
  2010年   130篇
  2009年   118篇
  2008年   154篇
  2007年   159篇
  2006年   158篇
  2005年   136篇
  2004年   129篇
  2003年   123篇
  2002年   108篇
  2001年   11篇
  2000年   9篇
  1999年   16篇
  1998年   16篇
  1997年   12篇
  1996年   12篇
  1995年   12篇
  1994年   14篇
  1993年   10篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   8篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1969年   1篇
排序方式: 共有2768条查询结果,搜索用时 0 毫秒
81.
Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2) is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.  相似文献   
82.
Nitrogen is generally considered one of the major limiting nutrients in plant growth. The biological process responsible for reduction of molecular nitrogen into ammonia is referred to as nitrogen fixation. A wide diversity of nitrogen-fixing bacterial species belonging to most phyla of the Bacteria domain have the capacity to colonize the rhizosphere and to interact with plants. Leguminous and actinorhizal plants can obtain their nitrogen by association with rhizobia or Frankia via differentiation on their respective host plants of a specialized organ, the root nodule. Other symbiotic associations involve heterocystous cyanobacteria, while increasing numbers of nitrogen-fixing species have been identified as colonizing the root surface and, in some cases, the root interior of a variety of cereal crops and pasture grasses. Basic and advanced aspects of these associations are covered in this review.  相似文献   
83.
84.
Traditional Chinese medicinal plants are sources of biologically active compounds, providing raw material for pharmaceutical, cosmetic and fragrance industries. The endophytes of medicinal plants participate in biochemical pathways and produce analogous or novel bioactive compounds. Panxi plateau in South-west Sichuan in China with its unique geographical and climatological characteristics is a habitat of a great variety of medicinal plants. In this study, 560 endophytic actinomycetes were isolated from 26 medicinal plant species in Panxi plateau. 60 isolates were selected for 16S rDNA-RFLP analysis and 14 representative strains were chosen for 16S rDNA sequencing. According to the phylogenetic analysis, seven isolates were Streptomyces sp., while the remainder belonged to genera Micromonospora, Oerskovia, Nonomuraea, Promicromonospora and Rhodococcus. Antimicrobial activity analysis combined with the results of amplifying genes coding for polyketide synthetase (PKS-I, PKS-II) and nonribosomal peptide synthetase (NRPS) showed that endophytic actinomycetes isolated from medicinal plants in Panxi plateau had broad-spectrum antimicrobial activity and potential natural product diversity, which further proved that endophytic actinomycetes are valuable reservoirs of novel bioactive compounds.  相似文献   
85.
Highlights? Two-way modulations of adipose VEGF were generated with aP2-Cre transgene ? Adipose VEGF KO reduces vasculature, increases hypoxia and inflammation in fat ? Adipose VEGF KO accelerates the development of metabolic disease in high-fat diet ? Induced adipose VEGF has opposite effect on fat and restores metabolic homeostasis  相似文献   
86.
The essential redox cofactors riboflavin monophosphate (FMN) and flavin adenine dinucleotide (FAD) are synthesised from their precursor, riboflavin, in sequential reactions by the metal-dependent riboflavin kinase and FAD synthetase. Here, we describe the 1.6A crystal structure of the Schizosaccharomyces pombe riboflavin kinase. The enzyme represents a novel family of phosphoryl transferring enzymes. It is a monomer comprising a central beta-barrel clasped on one side by two C-terminal helices that display an L-like shape. The opposite side of the beta-barrel serves as a platform for substrate binding as demonstrated by complexes with ADP and FMN. Formation of the ATP-binding site requires significant rearrangements in a short alpha-helix as compared to the substrate free form. The diphosphate moiety of ADP is covered by the glycine-rich flap I formed from parts of this alpha-helix. In contrast, no significant changes are observed upon binding of riboflavin. The ribityl side-chain might be covered by a rather flexible flap II. The unusual metal-binding site involves, in addition to the ADP phosphates, only the strictly conserved Thr45. This may explain the preference for zinc observed in vitro.  相似文献   
87.
88.
A high degree of genetic diversity among 125 peanut bradyrhizobial strains and among 32 peanut cultivars collected from different regions of China was revealed by using the amplified fragment length polymorphism (AFLP) technique. Eighteen different peanut bradyrhizobial genotypes and six peanut cultivars were selected for symbiotic cross-inoculation experiments. The genomic diversity was reflected in the symbiotic diversity. The peanut cultivars varied in their ability to nodulate with the strains used. Some cultivars had a more restricted host range than the others. Also the strains displayed a range of nodulation patterns. In yield formation there were clear differences between the plant cultivar/bradyrhizobium combinations. There was good compatibility between some peanut bradyrhizobial strains and selected cultivars, with inoculation resulting in well-nodulated, high-yielding symbiotic combinations, but no plant cultivar was compatible with all strains used. The strains displayed a varying degree of effectiveness, with some strains being fairly effective with all cultivars and others with selected ones. The AFLP genotypes of the strains did not explain the symbiotic behavior, whereas the yield formation of the plant cultivars was more related to the genotype. It is concluded that to obtain optimal nitrogen fixation efficiency of peanut in the field, compatible plant cultivar-bradyrhizobium combinations should be selected either by finding inoculant strains compatible with the plant cultivars used, or plant cultivars compatible with the indigenous bradyrhizobia.  相似文献   
89.
90.
Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号