首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2567篇
  免费   215篇
  国内免费   1篇
  2023年   13篇
  2022年   24篇
  2021年   73篇
  2020年   33篇
  2019年   43篇
  2018年   51篇
  2017年   53篇
  2016年   90篇
  2015年   162篇
  2014年   155篇
  2013年   179篇
  2012年   251篇
  2011年   231篇
  2010年   136篇
  2009年   119篇
  2008年   156篇
  2007年   162篇
  2006年   161篇
  2005年   138篇
  2004年   131篇
  2003年   123篇
  2002年   108篇
  2001年   14篇
  2000年   10篇
  1999年   16篇
  1998年   16篇
  1997年   12篇
  1996年   12篇
  1995年   12篇
  1994年   14篇
  1993年   10篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   8篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1969年   1篇
排序方式: 共有2783条查询结果,搜索用时 109 毫秒
101.
102.
It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic “hot spot” amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.  相似文献   
103.
104.
Age-dependent neurodegeneration resulting from widespread apoptosis of neurons and glia characterize the Drosophila Swiss Cheese (SWS) mutant. Neuropathy target esterase (NTE), the vertebrate homologue of SWS, reacts with organophosphates which initiate a syndrome of axonal degeneration. NTE is expressed in neurons and a variety of nonneuronal cell types in adults and fetal mice. To investigate the physiological functions of NTE, we inactivated its gene by targeted mutagenesis in embryonic stem cells. Heterozygous NTE(+/-) mice displayed a 50% reduction in NTE activity but underwent normal organ development. Complete inactivation of the NTE gene resulted in embryonic lethality, which became evident after gastrulation at embryonic day 9 postcoitum (E9). As early as E7.5, mutant embryos revealed growth retardation which did not reflect impaired cell proliferation but rather resulted from failed placental development; as a consequence, massive apoptosis within the developing embryo preceded its resorption. Histological analysis indicated that NTE is essential for the formation of the labyrinth layer and survival and differentiation of secondary giant cells. Additionally, impairment of vasculogenesis in the yolk sacs and embryos of null mutant conceptuses suggested that NTE is also required for normal blood vessel development.  相似文献   
105.
Observations in enrichment cultures of ferric iron-reducing bacteria indicated that ferrihydrite was reduced to ferrous iron minerals via sulfur cycling with sulfide as the reductant. Ferric iron reduction via sulfur cycling was investigated in more detail with Sulfurospirillum deleyianum, which can utilize sulfur or thiosulfate as an electron acceptor. In the presence of cysteine (0.5 or 2 mM) as the sole sulfur source, no (microbial) reduction of ferrihydrite or ferric citrate was observed, indicating that S. deleyianum is unable to use ferric iron as an immediate electron acceptor. However, with thiosulfate at a low concentration (0.05 mM), growth with ferrihydrite (6 mM) was possible and sulfur was cycled up to 60 times. Also, spatially distant ferrihydrite in agar cultures was reduced via diffusible sulfur species. Due to the low concentrations of thiosulfate, S. deleyianum produced only small amounts of sulfide. Obviously, sulfide delivered electrons to ferrihydrite with no or only little precipitation of black iron sulfides. Ferrous iron and oxidized sulfur species were produced instead, and the latter served again as the electron acceptor. These oxidized sulfur species have not yet been identified. However, sulfate and sulfite cannot be major products of ferrihydrite-dependent sulfide oxidation, since neither compound can serve as an electron acceptor for S. deleyianum. Instead, sulfur (elemental S or polysulfides) and/or thiosulfate as oxidized products could complete a sulfur cycle-mediated reduction of ferrihydrite.  相似文献   
106.
107.

Background  

Leber's congenital amaurosis (LCA) is a severe form of retinal dystrophy. Mutations in the RPE65 gene, which is abundantly expressed in retinal pigment epithelial (RPE) cells, account for approximately 10–15% of LCA cases. In this study we used the high turnover, and rapid breeding and maturation time of the Rpe65 -/- knockout mice to assess the efficacy of using rAAV-mediated gene therapy to replace the disrupted RPE65 gene. The potential for rAAV-mediated gene treatment of LCA was then analyzed by determining the pattern of RPE65 expression, the physiological and histological effects that it produced, and any improvement in visual function.  相似文献   
108.
Potato synthesises high levels of proteinase inhibitors in response to insect attack. This can adversely affect protein digestion in the insects, leading to reduced growth, delayed development and lowered fecundity. Colorado potato beetle overcomes this defence mechanism by changing the composition of its digestive proteinases. The induced cysteine proteinases in the adapted gut sustain a normal rate of protein hydrolysis either by inactivating the inhibitors by cleavage or by insensitivity to the inhibitors as a result of high Kis. In this study cDNA clones of cysteine proteinases in adapted guts were isolated by nested PCR on the basis of N-terminal sequences previously determined for purified enzymes (Gruden et al., 2003). The cysteine proteinase cDNAs can be classified into three groups: intestains A, B and C. The amino acid identity is more than 91% within and 35-62% between the groups. They share 43-50% identity to mammalian cathepsins S, L, K, H, J and cathepsin-like enzymes from different arthropods. Homology modelling predicts that intestains A, B and C follow the general fold of papain-like proteinases. Intestains from each group, however, differ in some specific structural characteristics in the S1 and S2 binding sites that could influence enzyme-inhibitor interaction and thus, provide different mechanisms of resistance to inhibitors for the different enzymes. Gene expression analysis revealed that the intestains A and C, but not B, are induced twofold by potato plants with high levels of proteinase inhibitors.  相似文献   
109.
Hypohidrotic ectodermal dysplasia (HED) is characterized by clinical manifestations of severe hypodontia or anodontia, hypotrichosis, hypohidrosis, and specific facial appearance. Affected males show complete expression of clinical features of this condition. Their mothers, who are gene carriers, express only some signs, which are usually very mild. Currently available clinical methods are not sufficient for routine identification of the HED heterozygous gene carriers. The purpose of this study was to identify and describe the facial characteristics of HED patients and their mothers and to evaluate the usefulness of craniofacial pattern profile analysis (CFPP) in the diagnosis of this syndrome and the detection of gene carriers. In this study six affected males and their mothers were evaluated. Z-scores for each variable were calculated and compared with age- and sex-matched controls. Anthropometric analysis showed a specific dysmorphic pattern in CST patients that includes decreased skull base width (t-t: -1.67 Z); decreased forehead width (ft-ft: -1.8 Z), decreased midface depth (sn-t: -2.02 Z), markedly decreased total facial height (n-gn: -3.4 Z), and markedly decreased maxillary arc (t-sn-t: -2.5 Z). Gene carriers showed a similar tendency in their pattern profiles. They showed the same tendency towards lower Z-values for forehead width, facial height, and mouth width. The values for these measurements were between those of the affected and healthy controls. The most pronounced findings were increased head width (eu-eu: +2.83 Z), increased lower face width (go-go: +2.06 Z), and reduction of total facial height (n-gn: -0.95 Z). They also displayed increased nose width (al-al: +2.41 Z) and increased biocular distance (ex-ex: +2.01 Z). When used in conjunction with other methods the anthropometrics pattern profile analysis can considerably enhance detection of gene carriers for HED and increase objective assessment of the craniofacial region in HED patients.  相似文献   
110.
A large number of group I introns encode a family of homologous proteins that either promote intron splicing (maturases) or are site-specific DNA endonucleases that function in intron mobility (a process called "homing"). Genetic studies have shown that some of these proteins have both activities, yet how a single protein carries out both functions remains obscure. The similarity between respective DNA-binding sites and the RNA structure near the 5' and 3' splice sites has fueled speculation that such proteins may use analogous interactions to perform both functions. The Aspergillus nidulans mitochondrial COB group I intron encodes a bi-functional protein, I-AniI, that has both RNA maturase and site-specific DNA endonuclease activities in vitro. Here, we show that I-AniI shows distinctive features of the endonuclease family to which it belongs, including highly specific, tight binding and sequential DNA strand cleavage. Competition experiments demonstrate that I-AniI binds the COB intron RNA even in saturating concentrations of its DNA target site substrate, suggesting that the protein has a separate binding site for RNA. In addition, we provide evidence that two different DNA-binding site mutants of I-AniI have little effect on the protein's RNA maturation activity. Since RNA splicing is likely a secondary adaptation of the protein, these observations support a model in which homing endonucleases may have developed maturase function by utilizing a hitherto "non-functional" protein surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号