首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2681篇
  免费   271篇
  国内免费   2篇
  2954篇
  2024年   2篇
  2023年   15篇
  2022年   42篇
  2021年   64篇
  2020年   43篇
  2019年   49篇
  2018年   49篇
  2017年   47篇
  2016年   83篇
  2015年   157篇
  2014年   196篇
  2013年   174篇
  2012年   283篇
  2011年   281篇
  2010年   166篇
  2009年   134篇
  2008年   199篇
  2007年   165篇
  2006年   160篇
  2005年   157篇
  2004年   136篇
  2003年   104篇
  2002年   102篇
  2001年   16篇
  2000年   5篇
  1999年   12篇
  1998年   27篇
  1997年   9篇
  1996年   9篇
  1995年   15篇
  1994年   10篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有2954条查询结果,搜索用时 15 毫秒
991.
Modern evolutionary research has much to contribute to medical research and health care practices. Conversely, evolutionary biologists are tapping into the rapidly expanding databases of medical genomic information to further their research. These two fields, which have historically functioned in almost complete isolation, are finding mutual benefit in the exchange of information. The long-term benefits of this synthesis of two major areas of research include improved health care. Recently, efforts to catalyze this relationship have brought together evolutionary biologists, medical practitioners, anthropologists, and ethicists to lay the groundwork for further collaboration and exploration. The range of overlap is surprisingly broad and potentially invaluable.  相似文献   
992.

Background

Currently, there are no FDA approved screening tools for detecting early stage ovarian cancer in the general population. Development of a biomarker-based assay for early detection would significantly improve the survival of ovarian cancer patients.

Methods

We used a multiplex approach to identify protein biomarkers for detecting early stage ovarian cancer. This new technology (Proseek® Multiplex Oncology Plates) can simultaneously measure the expression of 92 proteins in serum based on a proximity extension assay. We analyzed serum samples from 81 women representing healthy, benign pathology, early, and advanced stage serous ovarian cancer patients.

Results

Principle component analysis and unsupervised hierarchical clustering separated patients into cancer versus non-cancer subgroups. Data from the Proseek® plate for CA125 levels exhibited a strong correlation with current clinical assays for CA125 (correlation coefficient of 0.89, 95% CI 0.83, 0.93). CA125 and HE4 were present at very low levels in healthy controls and benign cases, while higher levels were found in early stage cases, with highest levels found in the advanced stage cases. Overall, significant trends were observed for 38 of the 92 proteins (p < 0.001), many of which are novel candidate serum biomarkers for ovarian cancer. The area under the ROC curve (AUC) for CA125 was 0.98 and the AUC for HE4 was 0.85 when comparing early stage ovarian cancer versus healthy controls. In total, 23 proteins had an estimated AUC of 0.7 or greater. Using a naïve Bayes classifier that combined 12 proteins, we improved the sensitivity corresponding to 95% specificity from 93 to 95% when compared to CA125 alone. Although small, a 2% increase would have a significant effect on the number of women correctly identified when screening a large population.

Conclusions

These data demonstrate that the Proseek® technology can replicate the results established by conventional clinical assays for known biomarkers, identify new candidate biomarkers, and improve the sensitivity and specificity of CA125 alone. Additional studies using a larger cohort of patients will allow for validation of these biomarkers and lead to the development of a screening tool for detecting early stage ovarian cancer in the general population.
  相似文献   
993.
Wild populations of the critically endangered woylie (Bettongia penicillata) recently declined by 90% in southwest Western Australia. Increased predation is the leading hypothesis for decline, but disease may be playing a role increasing susceptibility to predation. To explore this possibility, we surveyed woylie populations in the wild, in captivity and in a predator-free sanctuary for exposure to, and infection with, four known pathogens of macropods: herpesviruses, Wallal and Warrego orbiviruses, and Toxoplasma gondii. Our study found two of 68 individuals positive for neutralizing antibodies against known macropodid alphaherpesviruses. Three of 45 individuals were PCR positive for a herpesvirus that was shown to be a novel gammaherpesvirus or a new strain/variant of Potoroid Herpesvirus 1. Further sequence information is required to definitively determine its correct classification. There was no evidence of antibodies to orbivirus Wallal and Warrego serogroups, and all serological samples tested for T. gondii were negative. This is the first report of PCR and serological detection of herpesviruses in the woylie. Positive individuals did not demonstrate clinical signs of herpesviral diseases; therefore, the clinical significance of herpesviruses to wild woylie populations remains unclear. Further monitoring for herpesvirus infections will be important to inform disease risk analysis for this virus and determine temporal trends in herpesvirus activity that may relate to population health and conservation outcomes.  相似文献   
994.
995.
In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.  相似文献   
996.
Recombinant therapeutic monoclonal antibodies (mAbs) must be purified from host cell proteins (HCPs), DNA, and other impurities present in Chinese hamster ovary (CHO) cell culture media. HCPs can potentially result in adverse clinical responses in patients and, in specific cases, have caused degradation of the final mAb product. As reported previously, residual traces of cathepsin D caused particle formation in the final product of mAb‐1. The current work was focused on identification of a primary sequence in mAb‐1 responsible for the binding and consequent co‐purification of trace levels of CHO cathepsin D. Surface plasmon resonance (SPR) was used to detect binding between immobilized CHO cathepsin D and a panel of mAbs. Out of 13 mAbs tested, only mAb‐1 and mAb‐6 bound to cathepsin D. An LYY motif in the HC CDR2 was common, yet unique, to only these two mAbs. Mutation of LYY to AAA eliminated binding of mAb‐1 to cathepsin D providing confirmation that this sequence motif was involved in the binding to CHO cathepsin D. Interestingly, the binding between mAb‐1 and cathepsin D was weaker than that of mAb‐6, which may be related to the fact that two aspartic acid residues near the LYY motif in mAb‐1 are replaced with neutral serine residues in mAb‐6. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:140–145, 2017  相似文献   
997.
998.
999.
The 3′→5′ exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase γ (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3′→5′ exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity.  相似文献   
1000.
Campylobacter jejuni is a major cause of diarrheal disease and food-borne gastroenteritis. The main reservoir of C. jejuni in poultry is the cecum, with an estimated content of 6 to 8 log10 CFU/g. If a flock is infected with C. jejuni, the majority of the birds in that flock will harbor the bacterium. Diagnostics at the flock level could thus be an important control point. The aim of the work presented here was to develop a complete quantitative PCR-based detection assay for C. jejuni obtained directly from cecal contents and fecal samples. We applied an approach in which the same paramagnetic beads were used both for cell isolation and for DNA purification. This integrated approach enabled both fully automated and quantitative sample preparation and a DNA extraction method. We developed a complete quantitative diagnostic assay through the combination of the sample preparation approach and real-time 5′-nuclease PCR. The assay was evaluated both by spiking the samples with C. jejuni and through the detection of C. jejuni in naturally colonized chickens. Detection limits between 2 and 25 CFU per PCR and a quantitative range of >4 log10 were obtained for spiked fecal and cecal samples. Thirty-one different poultry flocks were screened for naturally colonized chickens. A total of 262 (204 fecal and 58 cecal) samples were analyzed. Nineteen of the flocks were Campylobacter positive, whereas 12 were negative. Two of the flocks contained Campylobacter species other than C. jejuni. There was a large difference in the C. jejuni content, ranging from 4 to 8 log10 CFU/g of fecal or cecal material, for the different flocks tested. Some issues that have not yet promoted much attention are the prequantitative differences in the ability of C. jejuni to colonize poultry and the importance of these differences for causing human disease through food contamination. Understanding the colonization kinetics in poultry is therefore of great importance for controlling human infections by this bacterium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号