首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10921篇
  免费   840篇
  国内免费   1篇
  2023年   40篇
  2022年   34篇
  2021年   99篇
  2020年   95篇
  2019年   87篇
  2018年   201篇
  2017年   236篇
  2016年   264篇
  2015年   299篇
  2014年   327篇
  2013年   527篇
  2012年   874篇
  2011年   921篇
  2010年   485篇
  2009年   300篇
  2008年   683篇
  2007年   736篇
  2006年   667篇
  2005年   596篇
  2004年   542篇
  2003年   537篇
  2002年   465篇
  2001年   312篇
  2000年   348篇
  1999年   164篇
  1998年   103篇
  1997年   84篇
  1996年   98篇
  1995年   80篇
  1994年   87篇
  1993年   78篇
  1992年   81篇
  1991年   79篇
  1990年   83篇
  1989年   68篇
  1988年   70篇
  1987年   53篇
  1986年   71篇
  1985年   72篇
  1984年   70篇
  1983年   69篇
  1982年   62篇
  1981年   62篇
  1980年   65篇
  1979年   71篇
  1978年   56篇
  1977年   60篇
  1976年   48篇
  1975年   31篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria   总被引:9,自引:4,他引:5       下载免费PDF全文
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD+- and NADP+-isocitrate dehydrogenases, NAD+- and NADP+-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP+-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP+-malate dehydrogenase activity is probably due to unspecificity of the NAD+-malate dehydrogenase. NADP+-specific isocitrate dehydrogenase had much lower Kms for NADP+ and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD+-specific enzyme (101 micromolar for NAD+ and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP+-specific isocitrate dehydrogenase whereas the NAD+-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP+ stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP+ is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP+-reducing activities of malate dehydrogenase and the NADP+-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.  相似文献   
102.
Summary A major concern arising from the culture of clonally propagated crops of forest trees is risk of catastrophic loss due to an agent or event not anticipated at the time of population establishment. Since danger of such a catastrophe depends to some degree on the genetic variability within clonal mixtures, attention has been focused on the number of clones needed to keep the risk of catastrophic loss below specified levels. In this paper, we describe a genetical analysis of susceptibility to a destructive agent and the effect that frequency of genes for susceptibility have on the number of clones needed to effectively manage this risk. As a part of the analysis, parameters representing the minimum unacceptable mortality rates in plantations () and acceptable levels of risk () are defined, and their effects on the number of single-pair matings needed for the production of clonal stock are evaluated. Dominance and recessive gene action models for a single two-allele genetic locus are investigated. Probabilities for plantation failure are functions of the gene frequency for the allele conferring susceptibility. These functions converge to zero for allele frequencies less than but to one for frequencies greater than or equal to . This convergence is periodic rather than monotonie, since probabilities for plantation failure increase rather than decrease over restricted ranges of increasing numbers of clones. Recessive and dominance gene actions are found to have different effects on the minimum number of clones needed to attain acceptable risk levels. For conditions in which substantial numbers of clones are required, selecting multiple clones per mating is an effective method for reducing the number of matings necessary to achieve acceptable risks.Paper No. 12480 of the Journal Series of the North Carolina Agriculture Research Service, Raleigh, NC 27695-7643, USA  相似文献   
103.
Depth distributions of O2 respiration and denitrification activity were studied in 1- to 2-mm thick biofilms from nutrient-rich Danish streams. Acetylene was added to block the reduction of N2O, and micro-profiles of O2 and N2O in the biofilm were measured simultaneously with a polarographic microsensor. The specific activities of the two respiratory processes were calculated from the microprofiles using a one-dimensional diffusion-reaction model. Denitrification only occurred in layers where O2 was absent or present at low concentrations (of a fewM). Introduction of O2 into deeper layers inhibited denitrification, but the process started immediately after anoxic conditions were reestablished. Denitrification activity was present at greater depth in the biofilm when the NO3 concentration in the overlying water was elevated, and the deepest occurrence of denitrification was apparently determined by the depth penetration of NO3 . The denitrification rate within each specific layer was not affected by an increase in NO3 concentration, and the half-saturation concentration (Km) for NO3 therefore considered to be low (<25M). Addition of 0.2% yeast extract stimulated denitrification only in the uppermost 0.2 mm of the denitrification zone indicating a very efficient utilization of the dissolved organic matter within the upper layers of the biofilm.  相似文献   
104.
Plankton community structure and major pools and fluxes of carbon were observed before and after culmination of a bloom of cyanobacteria in eutrophic Frederiksborg Slotssø, Denmark. Biomass changes of heterotrophic nanoflagellates, ciliates, microzooplankton (50 to 140 μm), and macrozooplankton (larger than 140 μm) were compared to phytoplankton and bacterial production as well as micro- and macrozooplankton ingestion rates of phytoplankton and bacteria. The carbon budget was used as a means to examine causal relationships in the plankton community. Phytoplankton biomass decreased and algae smaller than 20 μm replacedAphanizomenon after the culmination of cyanobacteria. Bacterial net production peaked shortly after the culmination of the bloom (510 μg C liter?1 d?1 and decreased thereafter to a level of approximately 124 μg C liter?1 d?1. Phytoplankton extracellular release of organic carbon accounted for only 4–9% of bacterial carbon demand. Cyclopoid copepods and small-sized cladocerans started to grow after the culmination, but food limitation probably controlled the biomass after the collapse of the bloom. Grazing of micro- and macrozooplankton were estimated from in situ experiments using labeled bacteria and algae. Macrozooplankton grazed 22% of bacterial net production during the bloom and 86% after the bloom, while microzooplankton (nauplii, rotifers and ciliates larger than 50 μm) ingested low amounts of bacteria and removed 10–16% of bacterial carbon. Both macro-and microzooplankton grazed algae smaller than 20 μm, although they did not control algal biomass. From calculated clearance rates it was found that heterotrophic nanoflagellates (40–440 ml?1) grazed 3–4% of the bacterial production, while ciliates smaller than 50 μm removed 19–39% of bacterial production, supporting the idea that ciliates are an important link between bacteria and higher trophic levels. During and after the bloom ofAphanizomenon, major fluxes of carbon between bacteria, ciliates and crustaceans were observed, and heterotrophic nanoflagellates played a minor role in the pelagic food web.  相似文献   
105.
The effects of the Na+ gradient and pH on phosphate uptake were studied in brush-border membrane vesicles isolated from rat kidney cortex. The initial rates of Na(+)-dependent phosphate uptake were measured at pH 6.5, 7.5 and 8.5 in the presence of sodium gluconate. At a constant total phosphate concentration, the transport values at pH 7.5 and 8.5 were similar, but at pH 6.5 the influx was 31% of that at pH 7.5. However, when the concentration of bivalent phosphate was kept constant at all three pH values, the effect of pH was less pronounced; at pH 6.5, phosphate influx was 73% of that measured at pH 7.5. The Na(+)-dependent phosphate uptake was also influenced by a transmembrane pH difference; an outwardly directed H+ gradient stimulated the uptake by 48%, whereas an inwardly directed H+ gradient inhibited the uptake by 15%. Phosphate on the trans (intravesicular) side stimulated the Na(+)-gradient-dependent phosphate transport by 59%, 93% and 49%, and the Na(+)-gradient-independent phosphate transport by 240%, 280% and 244%, at pH 6.5, 7.5 and 8.5 respectively. However, in both cases, at pH 6.5 the maximal stimulation was seen only when the concentration of bivalent trans phosphate was the same as at pH 7.5. In the absence of a Na+ gradient, but in the presence of Na+, an outwardly directed H+ gradient provided the driving force for the transient hyperaccumulation of phosphate. The rate of uptake was dependent on the magnitude of the H+ gradient. These results indicate that: (1) the bivalent form of phosphate is the form of phosphate recognized by the carrier on both sides of the membrane; (2) protons are both activators and allosteric modulators of the phosphate carrier; (3) the combined action of both the Na+ (out/in) and H+ (in/out) gradients on the phosphate carrier contribute to regulate efficiently the re-absorption of phosphate.  相似文献   
106.
107.
Antisera against a number of Campylobacter species were used in immuno-histochemical and -cytochemical studies on cases of porcine intestinal adenomatosis. Avidin-biotin-complex (ABC) and streptavidin immunoperoxidase methods were used on formalin-fixed, paraffin-embedded and frozen sections. Protein A gold method was used on formaldehyde fixed and frozen sections for immuno-cytochemistry. The antisera used were raised in rabbits by subcutaneous or intravenous injection of living or formalin treated organisms. Antisera against different serotypes of the thermotolerant, catalase positive Campylobacters, Campylobacter jejuni and Campylobacter coli gave positive reactions in the immuno-histochemical studies. The staining was found in intestinal epithelial cells both in the ileum and in the colon and was restricted to the apical cytoplasm of adenomatous epithelial cells. The staining had a granular pattern, the positive structures sometimes having the shape of Campylobacter. Epithelial cells in areas with normal differentiation of goblet cells did not stain. In contrast, no staining resulted with antisera against Campylobacter sputorum subsp. mucosalis and Campylobacter hyointestinalis. Immuno-cytochemistry, using antisera against Campylobacter jejuni showed that the positive staining in altered epithelial cells were restricted to intracellular organisms having a structure resembling Campylobacter spp.  相似文献   
108.
The Ca2+-activated maxi K+ channel is predominant in the basolateral membrane of the surface cells in the distal colon. It may play a role in the regulation of the aldosterone-stimulated Na+ reabsorption from the intestinal lumen. Previous measurements of these basolateral K+ channels in planar lipid bilayers and in plasma membrane vesicles have shown a very high sensitivity to Ca2+ with a K 0.5 ranging from 20 nm to 300 nm, whereas other studies have a much lower sensitivity to Ca2+. To investigate whether this difference could be due to modulation by second messenger systems, the effect of phosphorylation and dephosphorylation was examined. After addition of phosphatase, the K+ channels lost their high sensitivity to Ca2+, yet they could still be activated by high concentrations of Ca2+ (10 μm). Furthermore, the high sensitivity to Ca2+ could be restored after phosphorylation catalyzed by a cAMP dependent protein kinase. There was no effect of addition of protein kinase C. In agreement with the involvement of enzymatic processes, lag periods of 30–120 sec for dephosphorylation and of 10–280 sec for phosphorylation were observed. The phosphorylation state of the channel did not influence the single channel conductance. The results demonstrate that the high sensitivity to Ca2+ of the maxi K+ channel from rabbit distal colon is a property of the phosphorylated form of the channel protein, and that the difference in Ca2+ sensitivity between the dephosphorylated and phosphorylated forms of the channel protein is more than one order of magnitude. The variety in Ca2+ sensitivities for maxi K+ channels from tissue to tissue and from different studies on the same tissue could be due to modification by second messenger systems. Received: 28 February 1995/Revised: 22 December 1995  相似文献   
109.
Previously, 1,3-galactosyltransferase-deficient (Tn+) and normal (TF+) T-lymphocyte clones have been established from a patient suffering from Tn-syndrome [Thurnheret al. (1992)Eur J Immunol 22: 1835–42], Tn+ T lymphocytes express only Tn antigen (GalNAc1-O-R) while other O-glycan structures such as sialosyl-Tn (Neu5Ac2,6GalNAc1-O-R) or TF (Gal1-3GalNAc1-O-R) antigens are absent from these cells as shown by flow cytometry using specific mABs for TF and sialosyl-Tn antigen, respectively. Normal T lymphocytes express the TF antigen and derivatives thereof. The surface glycans of Tn+ and TF+ cells were then analysed by flow cytometry using the following sialic acid-binding lectins:Amaranthus caudatus (ACA),Maackia amurensis (MAA),Limax flavus (LFA),Sambucus nigra (SNA) andTriticum vulgare (WGA). Equal and weak binding of MAA and SNA to both TF+ and Tn+ cells was found. WGA, LFA and ACA bound more strongly to TF+ cells than to Tn+ cells. Binding of ACA to TF+ cells was enhanced after sialidase treatment. To investigate the possible biological consequences of hyposialylation, binding of three sialic acid-dependent adhesion molecules to Tn+ and TF+ cells was estimated using radiolabelled Fc-chimeras of sialoadhesin (Sn), myelin-associated glycoprotein (MAG) and CD22. Equal and strong binding of human CD22 to both TF+ and Tn+ cells was found. Whereas binding of Sn and MAG to TF+ cells was strong (100%), binding to Tn+ cells amounted only to 33% (Sn) and 19% (MAG). These results indicate that thein vivo interactions of T lymphocytes in the Tn syndrome with CD22 are not likely to be affected, whereas adhesion mediated by Sn or MAG could be strongly reduced.  相似文献   
110.
Summary Protoplasts were prepared from mycelium of Aspergillus niger N-402. Sucrose was used to induce the synthesis and secretion of invertase. Protoplasts secreted 2 forms of invertase, different to those secreted by the mycelium. 14C mannose was shown to be taken up by protoplasts and incorporated into secreted proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号