首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1824篇
  免费   192篇
  国内免费   2篇
  2018篇
  2024年   4篇
  2023年   8篇
  2022年   25篇
  2021年   56篇
  2020年   26篇
  2019年   39篇
  2018年   49篇
  2017年   56篇
  2016年   71篇
  2015年   129篇
  2014年   135篇
  2013年   140篇
  2012年   151篇
  2011年   152篇
  2010年   104篇
  2009年   76篇
  2008年   130篇
  2007年   124篇
  2006年   95篇
  2005年   76篇
  2004年   77篇
  2003年   76篇
  2002年   80篇
  2001年   8篇
  2000年   7篇
  1999年   19篇
  1998年   20篇
  1997年   11篇
  1996年   15篇
  1995年   10篇
  1994年   5篇
  1993年   2篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
排序方式: 共有2018条查询结果,搜索用时 0 毫秒
111.
Conn KL  Hendzel MJ  Schang LM 《Journal of virology》2011,85(24):13234-13252
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.  相似文献   
112.
Invertebrate biomonitoring can reveal crucial information about the status of restoration projects; however, it is routinely underused because of the high level of taxonomic expertise and resources required. Invertebrate DNA metabarcoding has been used to characterize invertebrate biodiversity but its application in restoration remains untested. We use DNA metabarcoding, a new approach for restoration assessment, to explore the invertebrate composition from pitfall traps at two mine site restoration chronosequences in southwestern Australia. Invertebrates were profiled using two cytochrome oxidase subunit 1 assays to investigate invertebrate biodiversity. The data revealed differences between invertebrate communities at the two mines and between the different age plots of the chronosequences. Several characteristic taxa were identified for each age within the chronosequence, including springtails within the youngest sites (Order: Collembola) and millipedes within the oldest and reference sites (Order: Julida). This study facilitates development of a molecular “toolkit” for the monitoring of ecological restoration projects. We suggest that a metabarcoding approach shows promise in complementing current monitoring practices that rely on alpha taxonomy.  相似文献   
113.
Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.  相似文献   
114.
115.
116.
Sadler K  Eom KD  Yang JL  Dimitrova Y  Tam JP 《Biochemistry》2002,41(48):14150-14157
The intracellular delivery of most peptides, proteins, and nucleotides to the cytoplasm and nucleus is impeded by the cell membrane. To allow simplified, noninvasive delivery of attached cargo, cell-permeant peptides that are either highly cationic or hydrophobic have been utilized. Because cell-permeable peptides share half of the structural features of antimicrobial peptides containing clusters of charge and hydrophobic residues, we have explored antimicrobial peptides as templates for designing cell-permeant peptides. We prepared synthetic fragments of Bac 7, an antimicrobial peptide with four 14-residue repeats from the bactenecin family. The dual functions of cell permeability and antimicrobial activity of Bac 7 were colocalized at the N-terminal 24 residues of Bac 7. In general, long fragments of Bac(1-24) containing both regions were bactericidal and cell-permeable, whereas short fragments with only a cationic or hydrophobic region were cell-permeant without the attendant microbicidal activity when measured in a fluorescence quantitation assay and by confocal microscopy. In addition, the highly cationic fragments were capable of traversing the cell membrane and residing within the nucleus. A common characteristic shared by the cell-permeant Bac(1-24) fragments, irrespective of their number of charged cationic amino acids, is their high proline content. A 10-residue proline-rich peptide with two arginine residues was capable of delivering a noncovalently linked protein into cells. Thus, the proline-rich peptides represent a potentially new class of cell-permeant peptides for intracellular delivery of protein cargo. Furthermore, our results suggest that antimicrobial peptides may represent a rich source of templates for designing cell-permeant peptides.  相似文献   
117.
Pds5p and the cohesin complex are required for sister chromatid cohesion and localize to the same chromosomal loci over the same cell cycle window. However, Pds5p and the cohesin complex likely have distinct roles in cohesion. We report that pds5 mutants establish cohesion, but during mitosis exhibit precocious sister dissociation. Thus, unlike the cohesin complex, which is required for cohesion establishment and maintenance, Pds5p is required only for maintenance. We identified SMT4, which encodes a SUMO isopeptidase, as a high copy suppressor of both the temperature sensitivity and precocious sister dissociation of pds5 mutants. In contrast, SMT4 does not suppress temperature sensitivity of cohesin complex mutants. Pds5p is SUMO conjugated, with sumoylation peaking during mitosis. SMT4 overexpression reduces Pds5p sumoylation, whereas smt4 mutants have increased Pds5p sumoylation. smt4 mutants were previously shown to be defective in cohesion maintenance during mitosis. These data provide the first link between a protein required for cohesion, Pds5p, and sumoylation, and suggest that Pds5p sumoylation promotes the dissolution of cohesion.  相似文献   
118.
Lignocellulolytic bacteria have promised to be a fruitful source of new enzymes for next-generation lignocellulosic biofuel production. Puerto Rican tropical forest soils were targeted because the resident microbes decompose biomass quickly and to near-completion. Isolates were initially screened based on growth on cellulose or lignin in minimal media. 75 Isolates were further tested for the following lignocellulolytic enzyme activities: phenol oxidase, peroxidase, β-d-glucosidase, cellobiohydrolase, β-xylopyranosidase, chitinase, CMCase, and xylanase. Cellulose-derived isolates possessed elevated β-d-glucosidase, CMCase, and cellobiohydrolase activity but depressed phenol oxidase and peroxidase activity, while the contrary was true of lignin isolates, suggesting that these bacteria are specialized to subsist on cellulose or lignin. Cellobiohydrolase and phenol oxidase activity rates could classify lignin and cellulose isolates with 61% accuracy, which demonstrates the utility of model degradation assays. Based on 16S rRNA gene sequencing, all isolates belonged to phyla dominant in the Puerto Rican soils, Proteobacteria, Firmicutes, and Actinobacteria, suggesting that many dominant taxa are capable of the rapid lignocellulose degradation characteristic of these soils. The isolated genera Aquitalea, Bacillus, Burkholderia, Cupriavidus, Gordonia, and Paenibacillus represent rarely or never before studied lignolytic or cellulolytic species and were undetected by metagenomic analysis of the soils. The study revealed a relationship between phylogeny and lignocellulose-degrading potential, supported by Kruskal–Wallis statistics which showed that enzyme activities of cultivated phyla and genera were different enough to be considered representatives of distinct populations. This can better inform future experiments and enzyme discovery efforts.  相似文献   
119.
A novel series of arylindenopyrimidines were identified as A2A and A1 receptor antagonists. The series was optimized for in vitro activity by substituting the 8- and 9-positions with methylene amine substituents. The compounds show excellent activity in mouse models of Parkinson’s disease when dosed orally.  相似文献   
120.
An oxygen-affinity-modifying drug, voxelotor, has very recently been approved by the FDA for treatment of sickle cell disease. The proposed mechanism of action is by preferential binding of the drug to the R quaternary conformation, which cannot copolymerize with the T conformation to form sickle fibers. Here, we report widely different oxygen dissociation and oxygen association curves for normal blood in the presence of voxelotor and interpret the results in terms of the allosteric model of Monod, Wyman, and Changeux with the addition of drug binding. The model does remarkably well in quantitatively explaining a complex data set with just the addition of drug binding and dissociation rates for the R and T conformations. Whereas slow dissociation of the drug from R results in time-independent dissociation curves, the changing association curves result from slow dissociation of the drug from T, as well as extremely slow binding of the drug to T. By calculating true equilibrium curves from the model parameters, we show that there would be a smaller decrease in oxygen delivery from the left shift in the dissociation curve caused by drug binding if drug binding and dissociation for both R and T were rapid. Our application of the Monod, Wyman, and Changeux model demonstrates once more its enormous power in explaining many different kinds of experimental results for hemoglobin. It should also be helpful in analyzing oxygen binding and in vivo delivery in future investigations of oxygen-affinity-modifying drugs for sickle cell disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号