首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1951篇
  免费   226篇
  国内免费   2篇
  2179篇
  2024年   4篇
  2023年   10篇
  2022年   29篇
  2021年   57篇
  2020年   26篇
  2019年   41篇
  2018年   50篇
  2017年   56篇
  2016年   76篇
  2015年   134篇
  2014年   143篇
  2013年   144篇
  2012年   156篇
  2011年   159篇
  2010年   111篇
  2009年   80篇
  2008年   136篇
  2007年   132篇
  2006年   99篇
  2005年   77篇
  2004年   83篇
  2003年   85篇
  2002年   87篇
  2001年   15篇
  2000年   14篇
  1999年   28篇
  1998年   21篇
  1997年   14篇
  1996年   16篇
  1995年   10篇
  1994年   8篇
  1992年   3篇
  1991年   3篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   3篇
  1973年   3篇
  1970年   2篇
  1969年   2篇
排序方式: 共有2179条查询结果,搜索用时 15 毫秒
101.
Changes in the number, size, and shape of dendritic spines are associated with synaptic plasticity, which underlies cognitive functions such as learning and memory. This plasticity is attributed to reorganization of actin, but the molecular signals that regulate this process are poorly understood. In this study, we show neural Wiskott-Aldrich syndrome protein (N-WASP) regulates the formation of dendritic spines and synapses in hippocampal neurons. N-WASP localized to spines and active, functional synapses as shown by loading with FM4-64 dye. Knock down of endogenous N-WASP expression by RNA interference or inhibition of its activity by treatment with a specific inhibitor, wiskostatin, caused a significant decrease in the number of spines and excitatory synapses. Deletion of the C-terminal VCA region of N-WASP, which binds and activates the actin-related protein 2/3 (Arp2/3) complex, dramatically decreased the number of spines and synapses, suggesting activation of the Arp2/3 complex is critical for spine and synapse formation. Consistent with this, Arp3, like N-WASP, was enriched in spines and excitatory synapses and knock down of Arp3 expression impaired spine and synapse formation. A similar defect in spine and synapse formation was observed when expression of an N-WASP activator, Cdc42, was knocked down. Thus, activation of N-WASP and, subsequently, the Arp2/3 complex appears to be an important molecular signal for regulating spines and synapses. Arp2/3-mediated branching of actin could be a mechanism by which dendritic spine heads enlarge and subsequently mature. Collectively, our results point to a critical role for N-WASP and the Arp2/3 complex in spine and synapse formation.  相似文献   
102.
We present 12 variable microsatellite loci isolated from the invasive tropical house gecko, Hemidactylus mabouia. Polymerase chain reaction (PCR) primers were tested on 39 individuals from two locations in Miami, Florida. Heterozygote deficiency was detected for four loci, and we attribute this to possible null alleles or population substructure. Some loci successfully amplified PCR products in several congeners, indicating their potential for use in other geckos.  相似文献   
103.
104.
Oxidative stress is implicated in the cognitive deterioration associated with normal aging as well as neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. We investigated the effect of ascorbic acid (vitamin C) on oxidative stress, cognition, and motor abilities in mice null for gulono-γ-lactone oxidase (Gulo). Gulo−/− mice are unable to synthesize ascorbic acid and depend on dietary ascorbic acid for survival. Gulo−/− mice were given supplements that provided them either with ascorbic acid levels equal to- or slightly higher than wild-type mice (Gulo-sufficient), or lower than physiological levels (Gulo-low) that were just enough to prevent scurvy. Ascorbic acid is a major anti-oxidant in mice and any reduction in ascorbic acid level is therefore likely to result in increased oxidative stress. Ascorbic acid levels in the brain and liver were higher in Gulo-sufficient mice than in Gulo-low mice. F4-neuroprostanes were elevated in cortex and cerebellum in Gulo-low mice and in the cortex of Gulo-sufficient mice. All Gulo−/− mice were cognitively normal but had a strength and agility deficit that was worse in Gulo-low mice. This suggests that low levels of ascorbic acid and elevated oxidative stress as measured by F4-neuroprostanes alone are insufficient to impair memory in the knockouts but may be responsible for the exacerbated motor deficits in Gulo-low mice, and ascorbic acid may have a vital role in maintaining motor abilities.  相似文献   
105.
A highly constrained pseudo-tetrapeptide (OC252-324) further defines a new allosteric binding site located near the center of fructose-1,6-bisphosphatase. In a crystal structure, pairs of inhibitory molecules bind to opposite faces of the enzyme tetramer. Each ligand molecule is in contact with three of four subunits of the tetramer, hydrogen bonding with the side chain of Asp187 and the backbone carbonyl of residue 71, and electrostatically interacting with the backbone carbonyl of residue 51. The ligated complex adopts a quaternary structure between the canonical R- and T-states of fructose-1,6-bisphosphatase, and yet a dynamic loop essential for catalysis (residues 52-72) is in a conformation identical to that of the T-state enzyme. Inhibition by the pseudo-tetrapeptide is cooperative (Hill coefficient of 2), synergistic with both AMP and fructose 2,6-bisphosphate, noncompetitive with respect to Mg2+, and uncompetitive with respect to fructose 1,6-bisphosphate. The ligand dramatically lowers the concentration at which substrate inhibition dominates the kinetics of fructose-1,6-bisphosphatase. Elevated substrate concentrations employed in kinetic screens may have facilitated the discovery of this uncompetitive inhibitor. Moreover, the inhibitor could mimic an unknown natural effector of fructose-1,6-bisphosphatase, as it interacts strongly with a conserved residue of undetermined functional significance.  相似文献   
106.
Yersinia pestis causes pneumonic plague, a disease characterized by inflammation, necrosis and rapid bacterial growth which together cause acute lung congestion and lethality. The bacterial type III secretion system (T3SS) injects 7 effector proteins into host cells and their combined activities are necessary to establish infection. Y. pestis infection of the lungs proceeds as a biphasic inflammatory response believed to be regulated through the control of apoptosis and pyroptosis by a single, well-conserved T3SS effector protein YopJ. Recently, YopJ-mediated pyroptosis, which proceeds via the NLRP3-inflammasome, was shown to be regulated by a second T3SS effector protein YopK in the related strain Y. pseudotuberculosis. In this work, we show that for Y. pestis, YopK appears to regulate YopJ-mediated apoptosis, rather than pyroptosis, of macrophages. Inhibition of caspase-8 blocked YopK-dependent apoptosis, suggesting the involvement of the extrinsic pathway, and appeared cell-type specific. However, in contrast to yopJ, deletion of yopK caused a large decrease in virulence in a mouse pneumonic plague model. YopK-dependent modulation of macrophage apoptosis was observed at 6 and 24 hours post-infection (HPI). When YopK was absent, decreased populations of macrophages and dendritic cells were seen in the lungs at 24 HPI and correlated with resolution rather than progression of inflammation. Together the data suggest that Y. pestis YopK may coordinate the inflammatory response during pneumonic plague through the regulation of apoptosis of immune cells.  相似文献   
107.
Ecologists often use mark-recapture to estimate demographic variables such as abundance, growth rate, or survival for samples of wild animal populations. A common assumption underlying mark-recapture is that all animals have an equal probability of detection, and failure to meet or correct for this assumption–as when certain members of the population are either easier or more difficult to capture than other animals–can lead to biased and inaccurate demographic estimates. We built within-year and among-years Cormack-Jolly-Seber recaptures-only models to identify causes of capture heterogeneity for a population of colonially nesting cliff swallows (Petrochelidon pyrrhonota) caught using mist-netting as a part of a 20-year mark-recapture study in southwestern Nebraska, U.S.A. Daily detection of cliff swallows caught in stationary mist nets at their colony sites declined as the birds got older and as the frequency of netting at a site within a season increased. Experienced birds’ avoidance of the net could be countered by sudden disturbances that startled them into a net, such as when we dropped a net over the side of a bridge or flushed nesting cliff swallows into a stationary net positioned at a colony entrance. Our results support the widely held, but seldom tested, belief that birds learn to avoid stationary mist nets over time, but also show that modifications of traditional field methods can reduce this source of recapture heterogeneity.  相似文献   
108.
“Prey Play” is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator–prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as limiting factors. Through this activity, students will enhance their communication and observation skills and showcase their creativity.  相似文献   
109.
Few regions have been more severely impacted by climate change in the USA than the Desert Southwest. Here, we use ecological genomics to assess the potential for adaptation to rising global temperatures in a widespread songbird, the willow flycatcher (Empidonax traillii), and find the endangered desert southwestern subspecies (E. t. extimus) most vulnerable to future climate change. Highly significant correlations between present abundance and estimates of genomic vulnerability – the mismatch between current and predicted future genotype–environment relationships – indicate small, fragmented populations of the southwestern willow flycatcher will have to adapt most to keep pace with climate change. Links between climate‐associated genotypes and genes important to thermal tolerance in birds provide a potential mechanism for adaptation to temperature extremes. Our results demonstrate that the incorporation of genotype–environment relationships into landscape‐scale models of climate vulnerability can facilitate more precise predictions of climate impacts and help guide conservation in threatened and endangered groups.  相似文献   
110.
Although notothenioid fishes lack swim bladders, some species live temporarily or permanently in the water column. Given its relatively high density, skeletal mass is a key determinant of buoyancy. Notothenioids have reduced skeletal ossification, but there is little quantitative data on the phylogenetic distribution of this trait. We obtained dry skeletal masses for 54 specimens representing 20 species from six notothenioid families. Although comparative data are sparse, notothenioid skeletons comprise a smaller percentage of body mass, <3.5%, than those of three non‐notothenioid perciforms. With relatively high skeletal mass, the non‐Antarctic Bovichtus diacanthus is similar in skeletal mass to some non‐notothenioids. Eleginops maclovinus, the non‐Antarctic sister group of the Antarctic clade, has a relatively light skeleton (<2% of body mass) similar to many species in the Antarctic clade. Low skeletal mass is therefore a synapomorphy shared by Eleginops plus the Antarctic clade. We provide gross, histological, and micro‐CT documentation of the structure and location of bone and cartilage in skulls, pectoral girdles, and vertebrae, with emphasis on the bovichtid B. diacanthus, the eleginopsid E. maclovinus, and the channichthyid Chaenodraco wilsoni. In Eleginops and the Antarctic clade, most bone is spongy and most species have persisting cartilage in the skull and appendicular skeleton. We also measured the relative size of the notochordal canal in adult vertebral centra of 38 species representing all eight families. There is considerable interspecific variation in this pedomorphic trait and all species show an ontogenetic reduction in the relative size of the canal. However, large persisting canals are present in adults of the Antarctic clade, especially in the nototheniids Pleuragramma and Aethotaxis and in a number of bathydraconid and channichthyid genera. J. Morphol. 275:841–861, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号