首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2259篇
  免费   240篇
  国内免费   2篇
  2023年   9篇
  2022年   23篇
  2021年   61篇
  2020年   27篇
  2019年   41篇
  2018年   53篇
  2017年   59篇
  2016年   75篇
  2015年   138篇
  2014年   149篇
  2013年   158篇
  2012年   169篇
  2011年   170篇
  2010年   114篇
  2009年   90篇
  2008年   150篇
  2007年   147篇
  2006年   117篇
  2005年   94篇
  2004年   101篇
  2003年   95篇
  2002年   92篇
  2001年   26篇
  2000年   19篇
  1999年   32篇
  1998年   24篇
  1997年   13篇
  1996年   17篇
  1995年   17篇
  1994年   9篇
  1993年   6篇
  1992年   15篇
  1991年   10篇
  1990年   11篇
  1989年   6篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   17篇
  1984年   13篇
  1983年   9篇
  1981年   8篇
  1980年   9篇
  1979年   5篇
  1977年   8篇
  1976年   9篇
  1974年   7篇
  1973年   5篇
  1971年   5篇
  1970年   5篇
排序方式: 共有2501条查询结果,搜索用时 31 毫秒
991.
The pathology of ankylosing spondylitis, reactive arthritis, and other spondyloarthropathies (SpA) is closely associated with the human leukocyte class I Ag HLA-B27. A characteristic finding in SpA is inflammation of cartilage structures of the joint, in particular at the site of ligament/tendon and bone junction (enthesitis). In this study, we investigated the role of CD8+ T cells in response to the cartilage proteoglycan aggrecan as a potential candidate autoantigen in BALB/c-B27 transgenic mice. We identified four new HLA-B27-restricted nonamer peptides, one of them (no. 67) with a particularly strong T cell immunogenicity. Peptide no. 67 immunization was capable of stimulating HLA-B27-restricted, CD8+ T cells in BALB/c-B27 transgenic animals, but not in wild-type BALB/c mice. The peptide was specifically recognized on P815-B27 transfectants by HLA-B27-restricted CTLs, which were also detectable by HLA tetramer staining ex vivo as well as in situ. Most importantly, analysis of the joints from peptide no. 67-immunized mice induced typical histological signs of SpA. Our data indicate that HLA-B27-restricted epitopes derived from human aggrecan are involved in the induction of inflammation (tenosynovitis), underlining the importance of HLA-B27 in the pathogenesis of SpA.  相似文献   
992.
The Lan3-14 and Laz10-1 monoclonal antibodies recognize a 400 kDa antigen that is specifically expressed by all muscle cells in leech. We show that the antigen recognized by both antibodies is a member of the filamin family of actin binding proteins. Leech filamin has two calponin homology domains and 35 filamin/ABP-repeat domains. In addition, we used the Laz10-1 antibody to characterize the development of the segmentally iterated dorsoventral flattener muscles. We demonstrate that the dorsoventral flattener muscle develops as three discrete bundles of myofibers and that CNS axons pioneering the DP nerve extend only along the middle bundle. Interestingly, the middle dorsoventral muscle anlage is associated with only non-neuronal expression of the L1-family cell adhesion molecule Tractin. This expression is transient and occurs at the precise developmental stages when DP nerve formation takes place. Based on these findings we propose that the middle dorsoventral muscle anlagen provides a substrate for early axonal outgrowth and nerve formation and that this function may be associated with differential expression of distinct cell adhesion molecules.  相似文献   
993.
The replication of porcine endogenous retrovirus subgroup A (PERV-A) and PERV-B in certain human cell lines indicates that PERV may pose an infectious risk in clinical xenotransplantation. We have previously reported that human-tropic PERVs isolated from infected human cells following cocultivation with miniature swine peripheral blood mononuclear cells (PBMC) are recombinants of PERV-A with PERV-C. Here, we report that these recombinants are exogenous viruses in miniature swine; i.e., they are not present in the germ line DNA. These viruses were invariably present in miniature swine that transmitted PERV to human cells and were also identified in some miniature swine that lacked this ability. These data, together with the demonstration of the absence of both replication-competent PERV-A and recombinant PERV-A/C loci in the genome of miniature swine (L. Scobie, S. Taylor, J. C. Wood, K. M. Suling, G. Quinn, C. Patience, H.-J. Schuurman, and D. E. Onions, J. Virol. 78:2502-2509, 2004), indicate that exogenous PERV is the principal source of human-tropic virus in these animals. Interestingly, strong expression of PERV-C in PBMC correlated with an ability of the PBMC to transmit PERV-A/C recombinants in vitro, indicating that PERV-C may be an important factor affecting the production of human-tropic PERV. In light of these observations, the safety of clinical xenotransplantation from miniature swine will be most enhanced by the utilization of source animals that do not transmit PERV to either human or porcine cells. Such animals were identified within the miniature swine herd and may further enhance the safety of clinical xenotransplantation.  相似文献   
994.
Patterns of geographic variation in phenotype or genotype may provide evidence for natural selection. Here, we compare phenotypic variation in color, allele frequencies of a pigmentation gene (the melanocortin-1 receptor, Mc1r), and patterns of neutral mitochondrial DNA (mtDNA) variation in rock pocket mice (Chaetodipus intermedius) across a habitat gradient in southern Arizona. Pocket mice inhabiting volcanic lava have dark coats with unbanded, uniformly melanic hairs, whereas mice from nearby light-colored granitic rocks have light coats with banded hairs. This color polymorphism is a presumed adaptation to avoid predation. Previous work has demonstrated that two Mc1r alleles, D and d, differ by four amino acids, and are responsible for the color polymorphism: DD and Dd genotypes are melanic whereas dd genotypes are light colored. To determine the frequency of the two Mc1r allelic classes across the dark-colored lava and neighboring light-colored granite, we sequenced the Mc1r gene in 175 individuals from a 35-km transect in the Pinacate lava region. We also sequenced two neutral mtDNA genes, COIII and ND3, in the same individuals. We found a strong correlation between Mc1r allele frequency and habitat color and no correlation between mtDNA markers and habitat color. Using estimates of migration from mtDNA haplotypes between dark- and light-colored sampling sites and Mc1r allele frequencies at each site, we estimated selection coefficients against mismatched Mc1r alleles, assuming a simple model of migration-selection balance. Habitat-dependent selection appears strong but asymmetric: selection is stronger against light mice on dark rock than against melanic mice on light rock. Together these results suggest that natural selection acts to match pocket mouse coat color to substrate color, despite high levels of gene flow between light and melanic populations.  相似文献   
995.
Angiotensin-converting enzyme (ACE) produces the vasoconstrictor angiotensin II. The ACE protein is composed of two homologous domains, each binding zinc and each independently catalytic. To assess the physiologic significance of the two ACE catalytic domains, we used gene targeting in mice to introduce two point mutations (H395K and H399K) that selectively inactivated the ACE N-terminal catalytic site. This modification does not affect C-terminal enzymatic activity or ACE protein expression. In addition, the testis ACE isozyme is not affected by the mutations. Analysis of homozygous mutant mice (termed ACE 7/7) showed normal plasma levels of angiotensin II but an elevation of plasma and urine N-acetyl-Ser-Asp-Lys-Pro, a peptide suggested to inhibit bone marrow maturation. Despite this, ACE 7/7 mice had blood pressure, renal function, and hematocrit that were indistinguishable from wild-type mice. We also studied compound heterozygous mice in which one ACE allele was null (no ACE expression) and the second allele encoded the mutations selectively inactivating the N-terminal catalytic domain. These mice produced approximately half the normal levels of ACE, with the ACE protein lacking N-terminal catalytic activity. Despite this, the mice have a phenotype indistinguishable from wild-type animals. This study shows that, in vivo, the presence of the C-terminal ACE catalytic domain is sufficient to maintain a functional renin-angiotensin system. It also strongly suggests that the anemia present in ACE null mice is not due to the accumulation of the peptide N-acetyl-Ser-Asp-Lys-Pro.  相似文献   
996.
A member of the A disintegrin and metalloproteinase domain with thrombospondin type-1 motifs (ADAMTS-4) protease family can efficiently cleave aggrecan at several sites detected in joints of osteoarthritic patients. Although recent studies have shown that removal of the prodomain of ADAMTS4 is critical for its ability to degrade aggrecan, the cellular mechanisms for its processing and trafficking remain unclear. In this study, by using both furin-specific inhibitor and RNA interference technique, we demonstrate that furin plays an important role in the intracellular removal of ADAMTS4 prodomain. Further, we demonstrate that proADAMTS4 can be processed by means of multiple furin recognition sites: (206)RPRR(209), (209)RAKR(212), or (211)KR(212). The processing of proADAMTS4 was completely blocked by brefeldin A treatment, suggesting that processing occurs in the trans-Golgi network. Indeed, ADAMTS4 is co-localized with furin in trans-Golgi network. Interestingly, the pro form of ADAMTS4, not its mature one, co-precipitates with furin, suggesting that furin physically interacts with the prodomain of ADAMTS-4. In addition, our evidence suggests that a furin-independent pathway may also contribute to the activation of ADAMTS4. These results indicate that the activation mechanism for ADAMTS4 can be targeted for therapeutical intervention against this enzyme.  相似文献   
997.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a membrane-associated, essential component of the viral replication complex. Here, we report the three-dimensional structure of the membrane anchor domain of NS5A as determined by NMR spectroscopy. An alpha-helix extending from amino acid residue 5 to 25 was observed in the presence of different membrane mimetic media. This helix exhibited a hydrophobic, Trprich side embedded in detergent micelles, while the polar, charged side was exposed to the solvent. Thus, the NS5A membrane anchor domain forms an in-plane amphipathic alpha-helix embedded in the cytosolic leaflet of the membrane bilayer. Interestingly, mutations affecting the positioning of fully conserved residues located at the cytosolic surface of the helix impaired HCV RNA replication without interfering with the membrane association of NS5A. In conclusion, the NS5A membrane anchor domain constitutes a unique platform that is likely involved in specific interactions essential for the assembly of the HCV replication complex and that may represent a novel target for antiviral intervention.  相似文献   
998.
999.
To assess genetic diversity in Cryptosporidium oocysts from Canada geese, 161 fecal samples from Canada geese in the United States were analyzed. Eleven (6.8%) were positive for Cryptosporidium spp. following nested PCR amplification of the hypervariable region of the 18S rRNA gene. Nine PCR products from geese were cloned and sequenced, and all nine diverged from previously reported Cryptosporidium 18S rRNA gene sequences. Five sequences were very similar or identical to each other but genetically distinct from that of Cryptosporidium baileyi; two were most closely related to, but genetically distinct from, the first five; and two were distinct from any other sequence analyzed. One additional sequence in the hypervariable region of the 18S rRNA gene isolated from a cormorant was identical to that of C. baileyi. Phylogenetic analysis provided evidence for new genotypes of Cryptosporidium species in Canada geese. Results of this study suggest that the taxonomy of Cryptosporidium species in geese is complex and that a more complete understanding of genetic diversity among these parasites will facilitate our understanding of oocyst sources and species in the environment.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号