首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   68篇
  国内免费   1篇
  652篇
  2024年   1篇
  2023年   2篇
  2022年   14篇
  2021年   17篇
  2020年   6篇
  2019年   10篇
  2018年   15篇
  2017年   11篇
  2016年   19篇
  2015年   50篇
  2014年   36篇
  2013年   57篇
  2012年   49篇
  2011年   67篇
  2010年   35篇
  2009年   28篇
  2008年   33篇
  2007年   35篇
  2006年   27篇
  2005年   35篇
  2004年   15篇
  2003年   28篇
  2002年   25篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有652条查询结果,搜索用时 15 毫秒
21.
Simian-human immunodeficiency virus 89.6PD (SHIV89.6PD) was pathogenic after intrarectal inoculation of rhesus macaques. Infection was achieved with a minimum of 2,500 tissue culture infectious doses of cell-free virus stock, and there was no evidence for transient viremia in animals receiving subinfectious doses by the intrarectal route. Some animals experienced rapid progression of disease characterized by loss of greater than 90% of circulating CD4+ T cells, sustained decreases in CD20+ B cells, failure to elicit virus-binding antibodies in plasma, and high levels of antigenemia. Slower-progressing animals had moderate but varying losses of CD4+ T cells; showed increases in circulating CD20+ B cells; mounted vigorous responses to antibodies in plasma, including neutralizing antibodies; and had low or undetectable levels of antigenemia. Rapid progression led to death within 30 weeks after intrarectal inoculation. Plasma antigenemia at 2 weeks after inoculation (P ≤ 0.002), B- and T-cell losses (P ≤ 0.013), and failure to seroconvert (P ≤ 0.005) were correlated statistically with rapid progression. Correlations were evident by 2 to 4 weeks after intrarectal SHIV inoculation, indicating that early events in the host-pathogen interaction determined the clinical outcome.  相似文献   
22.
Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG), the only currently available vaccine against tuberculosis, has been reported to induce regulatory T cells in humans. The activity of regulatory T cells may not only dampen immunogenicity and protective efficacy of tuberculosis-vaccines, but also hamper diagnosis of infection of tuberculosis, when using immune (e.g. IFNγ-release) assays. Still, in settings of infectious diseases and vaccination, most studies have focused on CD4+ regulatory T cells, and not CD8+ regulatory T-cells. Here, we present a comparative analysis of the suppressive phenotype and function of CD4+ versus CD8+ T cells after in vitro live BCG activation of human cells. Moreover, as BCG is administered as a (partly) live vaccine, we also compared the ability of live versus heatkilled BCG in activating CD4+ and CD8+ regulatory T cell responses. BCG-activated CD8+ T cells consistently expressed higher levels of regulatory T cell markers, and after live BCG activation, density and (co-)expression of markers were significantly higher, compared to CD4+ T cells. Furthermore, selection on CD25-expression after live BCG activation enriched for CD8+ T cells, and selection on co-expression of markers further increased CD8+ enrichment. Ultimately, only T cells activated by live BCG were functionally suppressive and this suppressive activity resided predominantly in the CD8+ T cell compartment. These data highlight the important contribution of live BCG-activated CD8+ Treg cells to immune regulation and emphasize their possible negative impact on immunity and protection against tuberculosis, following BCG vaccination.  相似文献   
23.
The effects of bioaugmentation with a pentachlorophenol (PCP)-adapted consortium and biostimulation with glucose as a carbon source on anaerobic bioremediation of PCP-contaminated soil were investigated in terms of the initial PCP removal rate and the extent of PCP dechlorination and mineralization. Samples from two PCP-contaminated sites were prepared, put into a series of Hungate tubes, inoculated, and fed under different conditions. Chlorophenols in the tubes were monitored over a 4-month period to measure PCP transformation in the soil. In less contaminated soil (10 mg PCP/kg soil), it was found that biostimulation with glucose at 1 g/kg soil or bioaugmentation at 0.14 g volatile suspended solids (VSS)/kg soil could greatly improve PCP degradation. The best PCP degradation was obtained when both bioaugmentation and biostimulation were applied, but higher levels of glucose (2 g/kg soil) or inoculum (0.56 g VSS/kg soil) had little additional effect. The highest initial PCP-removal rate reached 8.1 μmol/kg soil-d, which is almost 20 times greater than in the unamended controls. PCP was dechlorinated to lesser chlorinated phenols with 0.6 chlorine remaining on average, and the extent of mineralization approached 70% in 4 months. In highly PCP-contaminated soil (90 mg PCP/kg soil), PCP degradation was partially inhibited, but the relative effects of augmentation, stimulation, and combined treatments were the same as in the less contaminated soil.  相似文献   
24.
25.
Armillaria root rot is a fungal disease that affects a wide range of trees and crops around the world. Despite being a widespread disease, little is known about the plant molecular responses towards the pathogenic fungi at the early phase of their interaction. With recent research highlighting the vital roles of metabolites in plant root–microbe interactions, we sought to explore the presymbiotic metabolite responses of Eucalyptus grandis seedlings towards Armillaria luteobuablina, a necrotrophic pathogen native to Australia. Using a metabolite profiling approach, we have identified threitol as one of the key metabolite responses in E. grandis root tips specific to A. luteobubalina that were not induced by three other species of soil-borne microbes of different lifestyle strategies (a mutualist, a commensalist, and a hemi-biotrophic pathogen). Using isotope labelling, threitol detected in the Armillaria-treated root tips was found to be largely derived from the fungal pathogen. Exogenous application of d- threitol promoted microbial colonization of E. grandis and triggered hormonal responses in root cells. Together, our results support a role of threitol as an important metabolite signal during eucalypt-Armillaria interaction prior to infection thus advancing our mechanistic understanding on the earliest stage of Armillaria disease development. Comparative metabolomics of eucalypt roots interacting with a range of fungal lifestyles identified threitol enrichment as a specific characteristic of Armillaria pathogenesis. Our findings suggest that threitol acts as one of the earliest fungal signals promoting Armillaria colonization of roots.  相似文献   
26.
Plague, caused by the bacterium Yersinia pestis, triggers die-offs in colonies of black-tailed prairie dogs (Cynomys ludovicianus), but the time-frame of plague activity is not well understood. We document plague activity in fleas from prairie dogs and their burrows on three prairie dog colonies that suffered die-offs. We demonstrate that Y. pestis transmission occurs over periods from several months to over a year in prairie dog populations before observed die-offs.  相似文献   
27.
Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover, these practices are molecule-specific and so only support one assay for one program at a time. Here, we describe a strategy to generate a unique assay reagent, 10C4, that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This “panel-specific” feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational, extensive and mainly composed of non-CDR residues. Most key contact residues were conserved among structurally-related therapeutic mAbs, but the combination of these residues exists at low prevalence in endogenous human immunoglobulins. Interestingly, an indirect contact residue on the heavy chain of the therapeutic appears to play a critical role in determining whether or not it can bind to 10C4, but has no affect on target binding. This may allow us to improve the binding of therapeutic mAbs to 10C4 for assay development in the future. Here, for the first time, we present a strategy to develop a panel-specific reagent that can expedite the development of multiple clinical assays for structurally-related therapeutic mAbs.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号