首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1067篇
  免费   106篇
  国内免费   1篇
  2023年   6篇
  2022年   19篇
  2021年   21篇
  2020年   7篇
  2019年   15篇
  2018年   21篇
  2017年   14篇
  2016年   27篇
  2015年   69篇
  2014年   56篇
  2013年   79篇
  2012年   78篇
  2011年   87篇
  2010年   52篇
  2009年   39篇
  2008年   61篇
  2007年   67篇
  2006年   47篇
  2005年   53篇
  2004年   35篇
  2003年   43篇
  2002年   46篇
  2001年   18篇
  2000年   19篇
  1999年   17篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1992年   9篇
  1991年   12篇
  1990年   8篇
  1989年   9篇
  1988年   7篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1984年   10篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   8篇
  1974年   9篇
  1973年   4篇
  1972年   4篇
  1971年   2篇
  1969年   2篇
  1936年   2篇
排序方式: 共有1174条查询结果,搜索用时 312 毫秒
121.

Background

A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear.

Methods

Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry.

Results

Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass-stimulated wild type BMDCs were sufficient to induce AHR and allergic airway inflammation, while GC frass-stimulated PAR-2-deficient BMDC had attenuated responses.

Conclusions

Together these data suggest an important role for allergen activation of PAR-2 on mDCs in mediating Th2/Th17 cytokine production and allergic airway responses.  相似文献   
122.

Background and Objectives

Interactions between plants and beneficial soil organisms (e.g. rhizobial bacteria, mycorrhizal fungi) are models for investigating the ecological impacts of such associations in plant communities, and the evolution and maintenance of variation in mutualisms (e.g. host specificity and the level of benefits provided). With relatively few exceptions, variation in symbiotic effectiveness across wild host species is largely unexplored.

Methods

We evaluated these associations using representatives of several legume genera which commonly co-occur in natural ecosystems in south-eastern Australia and an extensive set of rhizobial strains isolated from these hosts. These strains had been previously assigned to specific phylotypes on the basis of molecular analyses. In the first of two inoculation experiments, the growth responses of each host species was evaluated with rhizobial strains isolated from that species. The second experiment assessed performance across genera and the extent of host specificity using a subset of these strains.

Results

While host growth responses to their own (sympatric) isolates varied considerably, rhizobial phylotype was a significant predictor of symbiotic performance, indicating that bacterial species designations on the basis of molecular markers have ecological importance. Hosts responded in qualitatively different ways to sympatric and allopatric strains of rhizobia, ranging from species with a clear preference for their own strains, to those that were broad generalists, through to species that grew significantly better with allopatric strains.

Conclusion

Theory has focused on trade-offs between the provision of benefits and symbiont competitive ability that might explain the persistence of less beneficial strains. However, differences in performance among co-occurring host species could also drive such patterns. Our results thus highlight the likely importance of plant community structure in maintaining variation in symbiotic effectiveness.  相似文献   
123.
Folate is a source of one-carbons necessary for DNA methylation, a critical epigenetic modification necessary for genomic structure and function. The use of supplemental folic acid is widespread however; the potential influence on DNA methylation is unclear. We measured global DNA methylation using DNA extracted from samples from a population-based, double-blind randomized trial of folic acid supplementation (100, 400, 4000 μg per day) taken for 6 months; including a 3 month post-supplementation sample. We observed no changes in global DNA methylation in response to up to 4,000 μg/day for 6 months supplementation in DNA extracted from uncoagulated blood (approximates circulating blood). However, when DNA methylation was determined in coagulated samples from the same individuals at the same time, significant time, dose, and MTHFR genotype-dependent changes were observed. The baseline level of DNA methylation was the same for uncoagulated and coagulated samples; marked differences between sample types were observed only after intervention. In DNA from coagulated blood, DNA methylation decreased (-14%; P<0.001) after 1 month of supplementation and 3 months after supplement withdrawal, methylation decreased an additional 23% (P<0.001) with significant variation among individuals (max+17%; min-94%). Decreases in methylation of ≥25% (vs. <25%) after discontinuation of supplementation were strongly associated with genotype: MTHFR CC vs. TT (adjusted odds ratio [aOR] 12.9, 95%CI 6.4, 26.0). The unexpected difference in DNA methylation between DNA extracted from coagulated and uncoagulated samples in response to folic acid supplementation is an important finding for evaluating use of folic acid and investigating the potential effects of folic acid supplementation on coagulation.  相似文献   
124.
Many debilitating conditions are linked to bioenergetic defects. Developing screens to probe the genetic and/or chemical basis for such links has proved intractable. Furthermore, there is a need for a physiologically relevant assay of bioenergetics in whole organisms, especially for early stages in life where perturbations could increase disease susceptibility with aging. Thus, we asked whether we could screen bioenergetics and mitochondrial function in the developing zebrafish embryo. We present a multiplexed method to assay bioenergetics in zebrafish embryos from the blastula period (3 hours post-fertilization, hpf) through to hatching (48 hpf). In proof of principle experiments, we measured respiration and acid extrusion of developing zebrafish embryos. We quantified respiratory coupling to various bioenergetic functions by using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in the coupling to ATP turnover and proton leak are correlated with developmental stage. The multiwell format of this assay enables the user to screen for the effects of drugs and environmental agents on bioenergetics in the zebrafish embryo with high sensitivity and reproducibility.  相似文献   
125.
126.
The study of intermolecular interactions is a fundamental research subject in biology. Here we report on the development of a quantitative structure-based affinity scoring method for peptide-protein complexes, named PepScope. The method operates on the basis of a highly specific force field function (CHARMM) that is applied to all-atom structural representations of peptide-receptor complexes. Peptide side-chain contributions to total affinity are scored after detailed rotameric sampling followed by controlled energy refinement. A de novo approach to estimate dehydration energies was developed, based on the simulation of individual amino acids in a solvent box filled with explicit water molecules. Transferability of the method was demonstrated by its application to the hydrophobic HLA-A2 and -A24 receptors, the polar HLA-A1, and the sterically ruled HLA-B7 receptor. A combined theoretical and experimental study on 39 anchor substitutions in FxSKQYMTx/HLA-A2 and -A24 complexes indicated a prediction accuracy of about two thirds of a log-unit in Kd. Analysis of free energy contributions identified a great role of desolvation and conformational strain effects in establishing a given specificity profile. Interestingly, the method rightly predicted that most anchor profiles are less specific than so far assumed. This suggests that many potential T-cell epitopes could be missed with current prediction methods. The results presented in this work may therefore significantly affect T-cell epitope discovery programs applied in the field of peptide vaccine development.  相似文献   
127.
Defects in iron absorption and utilization lead to iron deficiency and anemia. While iron transport by transferrin receptor-mediated endocytosis is well understood, it is not completely clear how iron is transported from the endosome to the mitochondria where heme is synthesized. We undertook a positional cloning project to identify the causative mutation for the hemoglobin-deficit (hbd) mouse mutant, which suffers from a microcytic, hypochromic anemia apparently due to defective iron transport in the endocytosis cycle. As shown by previous studies, reticulocyte iron accumulation in homozygous hbd/hbd mice is deficient despite normal binding of transferrin to its receptor and normal transferrin uptake in the cell. We have identified a strong candidate gene for hbd, Sec15l1, a homologue to yeast SEC15, which encodes a key protein in vesicle docking. The hbd mice have an exon deletion in Sec15l1, which is the first known mutation of a SEC gene homologue in mammals.  相似文献   
128.
Deficiency of acid sphingomyelinase (ASM), an enzyme responsible for producing a pro-apoptotic second messenger ceramide, has previously been shown to promote the survival of fetal mouse oocytes in vivo and to protect oocytes from chemotherapy-induced apoptosis in vitro. Here we investigated the effects of ASM deficiency on testicular germ cell development and on the ability of germ cells to undergo apoptosis. At the age of 20 weeks, ASM knock-out (ASMKO) sperm concentrations were comparable with wild-type (WT) sperm concentrations, whereas sperm motility was seriously affected. ASMKO testes contained significantly elevated levels of sphingomyelin at the age of 8 weeks as detected by high-performance, thin-layer chromatography. Electron microscopy revealed that the testes started to accumulate pathological vesicles in Sertoli cells and in the interstitium at the age of 21 days. Irradiation of WT and ASMKO mice did not elevate intratesticular ceramide levels at 16 h after irradiation. In situ end labeling of apoptotic cells also showed a similar degree of cell death in both groups. After a 21-day recovery period, the numbers of primary spermatocytes and spermatogonia at G2 as well as spermatids were essentially the same in the WT and ASMKO testes, as detected by flow cytometry. In serum-free cultures both ASMKO and WT germ cells showed a significant increase in the level of ceramide, as well as massive apoptosis. In conclusion, ASM is required for maintenance of normal sphingomyelin levels in the testis and for normal sperm motility, but not for testicular ceramide production or for the ability of the germ cells to undergo apoptosis.  相似文献   
129.
Toxoplasma gondii and its apicomplexan relatives (such as Plasmodium falciparum, which causes malaria) are obligate intracellular parasites that rely on sequential protein release from specialized secretory organelles for invasion and multiplication within host cells. Because of the importance of these unusual membrane trafficking pathways for drug development and comparative cell biology, characterizing them is essential. In particular, it is unclear what role retrieval mechanisms play in parasite membrane trafficking or where they operate. Previously, we showed that T. gondii's beta-COP (TgBetaCOP; a subunit of coatomer protein complex I, COPI) and retrieval reporters localize exclusively to the zone between the parasite endoplasmic reticulum (ER) and Golgi apparatus. This suggested the existence of an HDEL receptor in T. gondii. We have now identified, cloned, and sequenced this receptor, TgERD2. TgERD2 localizes in a Golgi or ER pattern suggestive of the HDEL retrieval reporter (K. M. Hager, B. Striepen, L. G. Tilney, and D. S. Roos, J. Cell Sci. 112:2631-2638, 1999). A functional assay reveals that TgERD2 is able to complement the Saccharomyces cerevisiae ERD2 null mutant. Retrieval studies reveal that stable expression of a fluorescent exogenous retrieval ligand results in a dispersal of betaCOP signal throughout the cytoplasm and, surprisingly, results in betaCOP staining of the vacuolar space of the parasite. In contrast, stable expression of TgERD2GFP does not appear to disturb betaCOP staining. In addition to TgERD2, Toxoplasma contains two more divergent ERD2 relatives. Phylogenetic analysis reveals that these proteins belong to a previously unrecognized ERD2 subfamily common to plants and alveolate organisms and as such could represent mediators of parasite-specific retrieval functions. No evidence of class 2 ERD2 proteins was found in metazoan organisms or fungi.  相似文献   
130.
A fluorescent binding assay was developed to investigate the effects of mutagenesis on the binding affinity and substrate specificity of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. The chitin-binding domain was genetically fused to the N-terminus of a green fluorescent protein, and the polyhistidine-tagged hybrid protein was expressed in Escherichia coli. Residues likely to be involved in the binding site were mutated and their contributions to binding and substrate specificity were evaluated by affinity electrophoresis and depletion assays. The experimental binding isotherms were analyzed by non-linear regression using a modified Langmuir equation. Non-conservative substitution of tryptophan residue (W687) nearly abolished chitin-binding affinity and dramatically lowered chitosan binding while retaining the original level of curdlan binding. Double mutation E668K/P689A had altered specificity for several substrates and also impaired chitin binding significantly. Other substitutions in the binding site altered substrate specificity but had little effect on overall affinity for chitin. Interestingly, mutation T682A led to a higher specificity towards chitinous substrates than the wildtype. Furthermore, the ChBD-GFP hybrid protein was tested for use in diagnostic staining of cell walls of fungi and yeast and for the detection of fungal infections in tissue samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号