全文获取类型
收费全文 | 627篇 |
免费 | 74篇 |
国内免费 | 1篇 |
专业分类
702篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 14篇 |
2021年 | 18篇 |
2020年 | 6篇 |
2019年 | 10篇 |
2018年 | 15篇 |
2017年 | 12篇 |
2016年 | 19篇 |
2015年 | 51篇 |
2014年 | 39篇 |
2013年 | 59篇 |
2012年 | 50篇 |
2011年 | 72篇 |
2010年 | 37篇 |
2009年 | 30篇 |
2008年 | 34篇 |
2007年 | 37篇 |
2006年 | 28篇 |
2005年 | 37篇 |
2004年 | 15篇 |
2003年 | 28篇 |
2002年 | 28篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 8篇 |
1998年 | 8篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1985年 | 1篇 |
1984年 | 4篇 |
1981年 | 1篇 |
1976年 | 1篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1967年 | 2篇 |
1962年 | 1篇 |
1961年 | 1篇 |
1960年 | 2篇 |
1959年 | 1篇 |
1955年 | 1篇 |
排序方式: 共有702条查询结果,搜索用时 0 毫秒
21.
22.
The mitochondrial uniporter is a selective Ca2+ channel regulated by MICU1, an EF hand‐containing protein in the organelle's intermembrane space. MICU1 physically associates with and is co‐expressed with a paralog, MICU2. To clarify the function of MICU1 and its relationship to MICU2, we used gene knockout (KO) technology. We report that HEK‐293T cells lacking MICU1 or MICU2 lose a normal threshold for Ca2+ intake, extending the known gating function of MICU1 to MICU2. Expression of MICU1 or MICU2 mutants lacking functional Ca2+‐binding sites leads to a striking loss of Ca2+ uptake, suggesting that MICU1/2 disinhibit the channel in response to a threshold rise in [Ca2+]. MICU2's activity and physical association with the pore require the presence of MICU1, though the converse is not true. We conclude that MICU1 and MICU2 are nonredundant and together set the [Ca2+] threshold for uniporter activity. 相似文献
23.
Johanna W.-H. Wong Krista L. Plett Siria H.A. Natera Ute Roessner Ian C. Anderson Jonathan M. Plett 《Plant, cell & environment》2020,43(2):374-386
Armillaria root rot is a fungal disease that affects a wide range of trees and crops around the world. Despite being a widespread disease, little is known about the plant molecular responses towards the pathogenic fungi at the early phase of their interaction. With recent research highlighting the vital roles of metabolites in plant root–microbe interactions, we sought to explore the presymbiotic metabolite responses of Eucalyptus grandis seedlings towards Armillaria luteobuablina, a necrotrophic pathogen native to Australia. Using a metabolite profiling approach, we have identified threitol as one of the key metabolite responses in E. grandis root tips specific to A. luteobubalina that were not induced by three other species of soil-borne microbes of different lifestyle strategies (a mutualist, a commensalist, and a hemi-biotrophic pathogen). Using isotope labelling, threitol detected in the Armillaria-treated root tips was found to be largely derived from the fungal pathogen. Exogenous application of d- threitol promoted microbial colonization of E. grandis and triggered hormonal responses in root cells. Together, our results support a role of threitol as an important metabolite signal during eucalypt-Armillaria interaction prior to infection thus advancing our mechanistic understanding on the earliest stage of Armillaria disease development. Comparative metabolomics of eucalypt roots interacting with a range of fungal lifestyles identified threitol enrichment as a specific characteristic of Armillaria pathogenesis. Our findings suggest that threitol acts as one of the earliest fungal signals promoting Armillaria colonization of roots. 相似文献
24.
Krista St. Romain Daniel W. Tripp Daniel J. Salkeld Michael F. Antolin 《EcoHealth》2013,10(3):241-245
Plague, caused by the bacterium Yersinia pestis, triggers die-offs in colonies of black-tailed prairie dogs (Cynomys ludovicianus), but the time-frame of plague activity is not well understood. We document plague activity in fleas from prairie dogs and their burrows on three prairie dog colonies that suffered die-offs. We demonstrate that Y. pestis transmission occurs over periods from several months to over a year in prairie dog populations before observed die-offs. 相似文献
25.
Xiangdan Wang Valerie Quarmby Carl Ng Anan Chuntharapai Theresa Shek Charles Eigenbrot Robert F. Kelley Steven Shia Krista M McCutcheon John Lowe Cecilia Leddy Kyle Coachman Gary Cain Felix Chu Isidro Hotzel Mauricio Maia Eric Wakshull Jihong Yang 《MABS-AUSTIN》2013,5(4):540-554
Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover, these practices are molecule-specific and so only support one assay for one program at a time. Here, we describe a strategy to generate a unique assay reagent, 10C4, that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This “panel-specific” feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational, extensive and mainly composed of non-CDR residues. Most key contact residues were conserved among structurally-related therapeutic mAbs, but the combination of these residues exists at low prevalence in endogenous human immunoglobulins. Interestingly, an indirect contact residue on the heavy chain of the therapeutic appears to play a critical role in determining whether or not it can bind to 10C4, but has no affect on target binding. This may allow us to improve the binding of therapeutic mAbs to 10C4 for assay development in the future. Here, for the first time, we present a strategy to develop a panel-specific reagent that can expedite the development of multiple clinical assays for structurally-related therapeutic mAbs. 相似文献
26.
27.
28.
Thomas McNerney Anne Thomas Anna Senczuk Krista Petty Xiaoyang Zhao Rob Piper Juliane Carvalho Matthew Hammond Satin Sawant Jeanine Bussiere 《MABS-AUSTIN》2015,7(2):413-427
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. 相似文献
29.
Desmet J Meersseman G Boutonnet N Pletinckx J De Clercq K Debulpaep M Braeckman T Lasters I 《Proteins》2005,58(1):53-69
The study of intermolecular interactions is a fundamental research subject in biology. Here we report on the development of a quantitative structure-based affinity scoring method for peptide-protein complexes, named PepScope. The method operates on the basis of a highly specific force field function (CHARMM) that is applied to all-atom structural representations of peptide-receptor complexes. Peptide side-chain contributions to total affinity are scored after detailed rotameric sampling followed by controlled energy refinement. A de novo approach to estimate dehydration energies was developed, based on the simulation of individual amino acids in a solvent box filled with explicit water molecules. Transferability of the method was demonstrated by its application to the hydrophobic HLA-A2 and -A24 receptors, the polar HLA-A1, and the sterically ruled HLA-B7 receptor. A combined theoretical and experimental study on 39 anchor substitutions in FxSKQYMTx/HLA-A2 and -A24 complexes indicated a prediction accuracy of about two thirds of a log-unit in Kd. Analysis of free energy contributions identified a great role of desolvation and conformational strain effects in establishing a given specificity profile. Interestingly, the method rightly predicted that most anchor profiles are less specific than so far assumed. This suggests that many potential T-cell epitopes could be missed with current prediction methods. The results presented in this work may therefore significantly affect T-cell epitope discovery programs applied in the field of peptide vaccine development. 相似文献
30.
Gargi Seth Robert W. Hamilton Thomas R. Stapp Lisa Zheng Angela Meier Krista Petty Stephenie Leung Srikanth Chary 《Biotechnology and bioengineering》2013,110(5):1376-1385
Agility to schedule and execute cell culture manufacturing campaigns quickly in a multi‐product facility will play a key role in meeting the growing demand for therapeutic proteins. In an effort to shorten campaign timelines, maximize plant flexibility and resource utilization, we investigated the initiation of cell culture manufacturing campaigns using CHO cells cryopreserved in large volume bags in place of the seed train process flows that are conventionally used in cell culture manufacturing. This approach, termed FASTEC (Frozen Accelerated Seed Train for Execution of a Campaign), involves cultivating cells to high density in a perfusion bioreactor, and cryopreserving cells in multiple disposable bags. Each run for a manufacturing campaign would then come from a thaw of one or more of these cryopreserved bags. This article reviews the development and optimization of individual steps of the FASTEC bioprocess scheme: scaling up cells to greater than 70 × 106 cells/mL and freezing in bags with an optimized controlled rate freezing protocol and using a customized rack configuration. Flow cytometry analysis was also employed to understand the recovery of CHO cells following cryopreservation. Extensive development data were gathered to ensure that the quantity and quality of the drug manufactured using the FASTEC bioprocess scheme was acceptable compared to the conventional seed train process flow. The result of offering comparable manufacturing options offers flexibility to the cell culture manufacturing network. Biotechnol. Bioeng. 2013; 110: 1376–1385. © 2012 Wiley Periodicals, Inc. 相似文献