首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   5篇
  61篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   9篇
  2011年   3篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1988年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有61条查询结果,搜索用时 9 毫秒
11.
Summary The accumulation of ethylene in headspace of hypocotyl cultures of geranium (Pelargonium × hortorum Bailey) and its possible role in thidiazuron-mediated somatic embryogenesis was investigated. The action of ethylene as determined by various ethylene synthesis and action inhibitors was varied. Silver nitrate (AgNo3), aminoethoxyvinylglycine (AVG), and silver thiosulphate (STS) had no significant influence on the embryogenic response, while 1-methylcyclopropene (1-MCP) applied during the initial 3 d of induction or the expression phase, significantly increased the number of somatic embryos formed. Thidiazuron-treated tissues accumulated large quantities of ethylene within 6 h of culture, but the levels decreased after 12 h and reached very low levels after 3 d in culture. In the presence of acetylsalicylic acid (ASA), the levels of ethylene decreased by 20 to 50% during the first 48 h of culture. Analysis of endogenous auxin, cytokinins, and abscisic acid (ABA) indicated possible interactions of ethylene with other phytohormones during the induction of somatic embryos on geranium hypocotyl explants. Thidiazuron (10 μM) increased, while ASA decreased the levels of endogenous auxin, cytokinins, and abscisic acid during this period of induction.  相似文献   
12.
Caspases are key enzymes responsible for mediating apoptotic cell death. Across species, caspase‐2 is the most conserved caspase and stands out due to unique features. Apart from cell death, caspase‐2 also regulates autophagy, genomic stability and ageing. Caspase‐2 requires dimerization for its activation which is primarily accomplished by recruitment to high molecular weight protein complexes in cells. Here, we demonstrate that apoptosis inhibitor 5 (API5/AAC11) is an endogenous and direct inhibitor of caspase‐2. API5 protein directly binds to the caspase recruitment domain (CARD) of caspase‐2 and impedes dimerization and activation of caspase‐2. Interestingly, recombinant API5 directly inhibits full length but not processed caspase‐2. Depletion of endogenous API5 leads to an increase in caspase‐2 dimerization and activation. Consistently, loss of API5 sensitizes cells to caspase‐2‐dependent apoptotic cell death. These results establish API5/AAC‐11 as a direct inhibitor of caspase‐2 and shed further light onto mechanisms driving the activation of this poorly understood caspase.  相似文献   
13.
Mitochondrial outer membrane permeabilization (MOMP) and release of mitochondrial intermembrane proteins like cytochrome c are critical steps in the control of apoptosis. Previous work has shown that MOMP depends on the functionally redundant multidomain proapoptotic proteins, Bak and Bax. Here we demonstrate that Bak and Bax are functionally non-redundant during Neisseria gonorrhoeae (Ngo)- and cisplatin-induced apoptosis. While the activation of Bak is caspase independent Bax activation needs Bak and active caspases. Silencing of either Bak or Bax resists both Ngo- and cisplatin- but not TNFalpha-induced apoptosis. Activation of Bak is required to release cytochrome c from the mitochondria; however, Bax is still required to activate effector caspases. Thus, both Bak and Bax are necessary to accomplish DNA damage and Ngo-induced apoptosis.  相似文献   
14.
The bacterial PorB porin, an ATP-binding β-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (ΔΨm). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of β-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of ΔΨm. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce ΔΨm loss and apoptosis, demonstrating that dissipation of ΔΨm is a requirement for cell death caused by neisserial infection.  相似文献   
15.
Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO2NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO2NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15–70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP–MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO2 NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO2NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO2 NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria.  相似文献   
16.
Our previous work has shown that the membrane microdomain-associated flotillin proteins are potentially involved in epidermal growth factor (EGF) receptor signaling. Here we show that knockdown of flotillin-1/reggie-2 results in reduced EGF-induced phosphorylation of specific tyrosines in the EGF receptor (EGFR) and in inefficient activation of the downstream mitogen-activated protein (MAP) kinase and Akt signaling. Although flotillin-1 has been implicated in endocytosis, its depletion affects neither the endocytosis nor the ubiquitination of the EGFR. However, EGF-induced clustering of EGFR at the cell surface is altered in cells lacking flotillin-1. Furthermore, we show that flotillins form molecular complexes with EGFR in an EGF/EGFR kinase-independent manner. However, knockdown of flotillin-1 appears to affect the activation of the downstream MAP kinase signaling more directly. We here show that flotillin-1 forms a complex with CRAF, MEK1, ERK, and KSR1 (kinase suppressor of RAS) and that flotillin-1 knockdown leads to a direct inactivation of ERK1/2. Thus, flotillin-1 plays a direct role during both the early phase (activation of the receptor) and late (activation of MAP kinases) phase of growth factor signaling. Our results here unveil a novel role for flotillin-1 as a scaffolding factor in the regulation of classical MAP kinase signaling. Furthermore, our results imply that other receptor-tyrosine kinases may also rely on flotillin-1 upon activation, thus suggesting a general role for flotillin-1 as a novel factor in receptor-tyrosine kinase/MAP kinase signaling.  相似文献   
17.
Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well-studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X-linked IAP (XIAP) and cellular IAP1 (c-IAP1) directly bind to Rac1 in a nucleotide-independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c-IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1-dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis.  相似文献   
18.
19.
20.
Root system is a vital part of plants for absorbing soil moisture and nutrients and it influences the drought tolerance. Identification of the genomic regions harbouring quantitative trait loci (QTLs) for root and yield traits, and the linked markers can facilitate sorghum improvement through marker-assisted selection (MAS) besides the deeper understanding of the plant response to drought stress. A population of 184 recombinant inbred lines (RILs), derived from E36-1 × SPV570, along with parents were phenotyped for component traits of yield in field and root traits in an above ground rhizotron. High estimates of heritability and genetic advance for all the root traits and for most of the yield traits, presents high scope for improvement of these traits by simple selection. A linkage map constructed with 104 marker loci comprising 50 EST-SSRs, 34 non-genic nuclear SSRs and 20 SNPs, and QTL analysis was performed using composite interval mapping (CIM) approach. A total of eight and 20 QTLs were mapped for root and yield related traits respectively. The QTLs for root volume, root fresh weight and root dry weight were found co-localized on SBI-04, supported by a positive correlation among these traits. Hence, these traits can be improved using the same linked markers. The lack of overlap between the QTLs of component traits of root and yield suggested that these two sets of parameters are independent in their influence and the possibility of combining these two traits might enhance productivity of sorghum under receding moisture condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号