首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1330篇
  免费   108篇
  国内免费   2篇
  1440篇
  2023年   7篇
  2022年   24篇
  2021年   36篇
  2020年   19篇
  2019年   24篇
  2018年   29篇
  2017年   29篇
  2016年   32篇
  2015年   47篇
  2014年   57篇
  2013年   68篇
  2012年   92篇
  2011年   102篇
  2010年   44篇
  2009年   45篇
  2008年   73篇
  2007年   71篇
  2006年   57篇
  2005年   57篇
  2004年   55篇
  2003年   56篇
  2002年   36篇
  2001年   29篇
  2000年   20篇
  1999年   25篇
  1998年   16篇
  1997年   11篇
  1996年   17篇
  1995年   16篇
  1994年   14篇
  1992年   10篇
  1991年   22篇
  1990年   11篇
  1989年   9篇
  1988年   11篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1983年   7篇
  1982年   9篇
  1979年   6篇
  1978年   7篇
  1976年   8篇
  1975年   6篇
  1974年   8篇
  1973年   8篇
  1971年   7篇
  1970年   11篇
  1969年   6篇
  1968年   10篇
排序方式: 共有1440条查询结果,搜索用时 15 毫秒
11.
The effect of structural changes in the N-terminal amino acid of AIV, with respect to AT4 receptor binding, was examined by competition with [125I]AIV in bovine adrenal membranes. Analogues with modifications of the first residue -amino group possessed lower affinities than the primary amine-containing parent compound. Peptides with a residue 1 -carbon in the conformation exhibited poor affinity for the AT4 receptor. Modifications of the residue 1 R-group demonstrate that a straight chain aliphatic moiety containing four carbons is optimal for receptor-ligand binding, as evidenced by the extremely high affinity of [Nle1]AIV (Ki = 3.59±0.51 pM). Replacement of the 1–2 peptide bond of AIV with the methylene bond isostere Ψ (CH2-NH), increased the Ki approximately fivefold, indicating that the peptide bond may be replaced wihle maintaining relatively high-affinity receptor binding.  相似文献   
12.
Techniques for possible higher and rapid production of citric acid from the well known industrial medium i.e. molasses has been reported using Aspergillus niger. This includes optimization of the total reducing sugar (TRS) and nutrients like nitrogen and phosphorous. The long and unproductive lag periods normally associated with this type of fermentation has been reduced. These strategies are discussed in detail. Dr. M. Chellapandian is thankful to the Council of Scientific and Industrial Research, New Delhi, for the award of research associateship.  相似文献   
13.
We cloned and analyzed nodABC from Rhizobium fredii USDA257. These genes are thought to have common functions in initiation of nitrogen-fixing nodules by all rhizobia. In USDA257, they were located in a 9.2-kb EcoRI fragment that was not closely linked to either of two copies of the regulatory gene, nodD. nodABC was present in a 3,094-base pair (bp) sequenced region, which also included a consensus nod-box promoter. The three open reading frames contained 654, 642, and 1,239 bp, respectively, and encoded deduced proteins of 21.9, 23.4, and 44.7 kD. The sequence of the nodABC region of USDA257 was generally homologous with corresponding regions from other rhizobia, but it diverged significantly in the 5' non-translated region and in the 3'terminus of nodC. nodC was not translationally coupled to nodSU, as in another soybean symbiont, Bradyrhizobium japonicum, and the deduced NodC protein was the shortest of any such proteins yet described. Site-directed mutagenesis of the 9.2-kb EcoRI fragment confirmed that nodA, nodB, and nodC are essential for nodulation of soybean, but failed to identify other linked nod genes. Daidzein, a major isoflavone from soybean roots, was the most potent of nine tested flavonoids in activating a plasmid-borne nodC::lacZ fusion. The 9.2-kb fragment complemented nodA-, nodB-, and nodC- mutants of R. meliloti to the Nod+ phenotype on Medicago sativa, M. truncatula, and Trigonella foenum-graecum. Nodule numbers, percentage of nodulated plants, and shoot dry weights, however, were considerably less than in plants inoculated with mutants complemented with nodABC from R. meliloti.  相似文献   
14.
Cellular metabolism is a very complex process. The biochemical pathways are fundamental structures of biology. These pathways possess a number of regeneration steps which facilitate energy shuttling on a massive scale. This facilitates the biochemical pathways to sustain the energy currency of the cells. This concept has been mimicked using electronic circuit components and it has been used to increase the efficiency of bio-energy generation. Six of the carbohydrate biochemical pathways have been chosen in which glycolysis is the principle pathway. All the six pathways are interrelated and coordinated in a complex manner. Mimic circuits have been designed for all the six biochemical pathways. The components of the metabolic pathways such as enzymes, cofactors etc., are substituted by appropriate electronic circuit components. Enzymes are related to the gain of transistors by the bond dissociation energies of enzyme-substrate molecules under consideration. Cofactors and coenzymes are represented by switches and capacitors respectively. Resistors are used for proper orientation of the circuits. The energy obtained from the current methods employed for the decomposition of organic matter is used to trigger the mimic circuits. A similar energy shuttle is observed in the mimic circuits and the percentage rise for each cycle of circuit functioning is found to be 78.90. The theoretical calculations have been made using a sample of domestic waste weighing 1.182 kg. The calculations arrived at finally speak of the efficiency of the novel methodology employed.  相似文献   
15.
Acetobacter pasteurianus, an obligately oxidative bacterium, is the first organism shown to utilize pyruvate decarboxylase (PDC) as a central enzyme for oxidative metabolism. In plants, yeast, and other bacteria, PDC functions solely as part of the fermentative ethanol pathway. During the growth of A. pasteurianus on lactic acid, the central intermediate pyruvate is cleaved to acetaldehyde and CO(2) by PDC. Acetaldehyde is subsequently oxidized to its final product, acetic acid. The presence of the PDC enzyme in A. pasteurianus was confirmed by zymograms stained for acetaldehyde production, enzyme assays using alcohol dehydrogenase as the coupling enzyme, and by cloning and characterization of the pdc operon. A. pasteurianus pdc was also expressed in recombinant Escherichia coli. The level of PDC activity was regulated in response to growth substrate, highest with lactic acid and absent with mannitol. The translated PDC sequence (548 amino acids) was most similar to that of Zymomonas mobilis, an obligately fermentative bacterium. A second operon ( aldA) was also found which is transcribed divergently from pdc. This operon encodes a putative aldehyde dehydrogenase (ALD2; 357 amino acids) related to class III alcohol dehydrogenases and most similar to glutathione-dependent formaldehyde dehydrogenases from alpha-Proteobacteria and Anabeana azollae.  相似文献   
16.
Madagascar has 59 described species of Coffea, of which 42 are listed as critically endangered, endangered, or vulnerable by the criteria of the Red List Category system of the World Conservation Union (IUCN). The littoral forest of Madagascar is a distinctive type of humid evergreen forest restricted to unconsolidated sand located within a few kilometers of the Indian Ocean, now persisting only as small fragments with ca. 10 % of its original range remaining. In an attempt to understand the genetic diversity of Madagascan coffee species, we studied ex situ and in situ populations of Coffea commersoniana, an endemic species of the littoral forests of southeastern Madagascar and soon to be impacted by mining activities in that region. The in situ populations studied showed higher genetic diversity than the ex situ population. The genetic partitioning among the two in situ populations of C. commersoniana was high enough to necessitate keeping the two populations separate for restoration purposes. Based on these findings, recommendations for conservation management (in situ and ex situ) are made.  相似文献   
17.
18.
This article highlights the research work carried out in the production of inulinases from various inulin substrates using strains of bacteria, yeast and fungi. Inulin is one of the numerous polysaccharides of plant origin that contains glucose or fructose. It is used as a substrate in industrial fermentation processes and in food industries due to its relatively cheap and abundant source for the microbiological production of high-fructose syrups, ethanol and acetone–butanol. The various oligosaccharides derived from inulin also find their application in the medical and dietary sector. The inulinase acts on the β-(2,1)-D-fructoside links in inulin releasing D-fructose. Hence, this article illustrates the capability of various microbes in hydrolyzing the carbon at its optimum nutrient concentration and operating condition towards inulinase production.  相似文献   
19.
Mycobacterium tuberculosis, the bacterial causative agent of tuberculosis, currently affects millions of people. The emergence of drug-resistant strains makes development of new antibiotics targeting the bacterium a global health priority. Pantothenate kinase, a key enzyme in the universal biosynthesis of the essential cofactor CoA, was targeted in this study to find new tuberculosis drugs. The biochemical characterizations of two new classes of compounds that inhibit pantothenate kinase from M. tuberculosis are described, along with crystal structures of their enzyme-inhibitor complexes. These represent the first crystal structures of this enzyme with engineered inhibitors. Both classes of compounds bind in the active site of the enzyme, overlapping with the binding sites of the natural substrate and product, pantothenate and phosphopantothenate, respectively. One class of compounds also interferes with binding of the cofactor ATP. The complexes were crystallized in two crystal forms, one of which is in a new space group for this enzyme and diffracts to the highest resolution reported for any pantothenate kinase structure. These two crystal forms allowed, for the first time, modeling of the cofactor-binding loop in both open and closed conformations. The structures also show a binding mode of ATP different from that previously reported for the M. tuberculosis enzyme but similar to that in the pantothenate kinases of other organisms.  相似文献   
20.
Covalent modification cycles are basic units and building blocks of posttranslational modification and cellular signal transduction. We systematically explore different spatial aspects of signal transduction in covalent modification cycles by starting with a basic temporal cycle as a reference and focusing on steady-state signal transduction. We consider, in turn, the effect of diffusion on spatial signal transduction, spatial analogs of ultrasensitive behavior, and the interplay between enzyme localization and substrate diffusion. Our analysis reveals the need to explicitly account for kinetics and diffusional transport (and localization) of enzymes, substrates, and complexes. It demonstrates a complex and subtle interplay between spatial heterogeneity, diffusion, and localization. Overall, examining the spatial dimension of covalent modification reveals that 1), there are important differences between spatial and temporal signal transduction even in this cycle; and 2), spatial aspects may play a substantial role in affecting and distorting information transfer in modules/networks that are usually studied in purely temporal terms. This has important implications for the systematic understanding of signaling in covalent modification cycles, pathways, and networks in multiple cellular contexts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号