首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   33篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   21篇
  2015年   21篇
  2014年   16篇
  2013年   29篇
  2012年   29篇
  2011年   35篇
  2010年   19篇
  2009年   24篇
  2008年   28篇
  2007年   22篇
  2006年   25篇
  2005年   32篇
  2004年   32篇
  2003年   22篇
  2002年   16篇
  2001年   18篇
  2000年   9篇
  1999年   12篇
  1998年   12篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   7篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1974年   4篇
  1971年   2篇
  1968年   1篇
  1967年   4篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
  1950年   1篇
排序方式: 共有542条查询结果,搜索用时 31 毫秒
81.
82.
A 25-year-old previously asymptomatic pregnant woman at 36 weeks'' gestation was noticed to have repetitive monomorphic ventricular tachycardia. A dilated left ventricle with moderately reduced systolic function was found on echocardiographic examination. This is a very rare presentation of peripartum cardiomyopathy (PPCMP) presenting with repetitive monomorphic ventricular tachycardia.  相似文献   
83.
84.
Left atrial muscle extends into the proximal third of the mitral valve (MV) anterior leaflet and transient tensing of this muscle has been proposed as a mechanism aiding valve closure. If such tensing occurs, regional stiffness in the proximal anterior mitral leaflet will be greater during isovolumic contraction (IVC) than isovolumic relaxation (IVR) and this regional stiffness difference will be selectively abolished by β-receptor blockade. We tested this hypothesis in the beating ovine heart. Radiopaque markers were sewn around the MV annulus and on the anterior MV leaflet in 10 sheep hearts. Four-dimensional marker coordinates were obtained from biplane videofluoroscopy before (CRTL) and after administration of esmolol (ESML). Heterogeneous finite element models of each anterior leaflet were developed using marker coordinates over matched pressures during IVC and IVR for CRTL and ESML. Leaflet displacements were simulated using measured left ventricular and atrial pressures and a response function was computed as the difference between simulated and measured displacements. Circumferential and radial elastic moduli for ANNULAR, BELLY and EDGE leaflet regions were iteratively varied until the response function reached a minimum. The stiffness values at this minimum were interpreted as the in vivo regional material properties of the anterior leaflet. For all regions and all CTRL beats IVC stiffness was 40–58% greater than IVR stiffness. ESML reduced ANNULAR IVC stiffness to ANNULAR IVR stiffness values. These results strongly implicate transient tensing of leaflet atrial muscle during IVC as the basis of the ANNULAR IVC–IVR stiffness difference.  相似文献   
85.

Background

The secretory proteins of Mycobacterium tuberculosis (M. tuberculosis) have been known to be involved in the virulence, pathogenesis as well as proliferation of the pathogen. Among this set, many proteins have been hypothesized to play a critical role at the genesis of the onset of infection, the primary site of which is invariably the human lung.

Methodology/Principal Findings

During our efforts to isolate potential binding partners of key secretory proteins of M. tuberculosis from a human lung protein library, we isolated peptides that strongly bound the virulence determinant protein Esat6. All peptides were less than fifty amino acids in length and the binding was confirmed by in vivo as well as in vitro studies. Curiously, we found all three binders to be unusually rich in phenylalanine, with one of the three peptides a short fragment of the human cytochrome c oxidase-3 (Cox-3). The most accessible of the three binders, named Hcl1, was shown also to bind to the Mycobacterium smegmatis (M. smegmatis) Esat6 homologue. Expression of hcl1 in M. tuberculosis H37Rv led to considerable reduction in growth. Microarray analysis showed that Hcl1 affects a host of key cellular pathways in M. tuberculosis. In a macrophage infection model, the sets expressing hcl1 were shown to clear off M. tuberculosis in much greater numbers than those infected macrophages wherein the M. tuberculosis was not expressing the peptide. Transmission electron microscopy studies of hcl1 expressing M. tuberculosis showed prominent expulsion of cellular material into the matrix, hinting at cell wall damage.

Conclusions/Significance

While the debilitating effects of Hcl1 on M. tuberculosis are unrelated and not because of the peptide''s binding to Esat6–as the latter is not an essential protein of M. tuberculosis–nonetheless, further studies with this peptide, as well as a closer inspection of the microarray data may shed important light on the suitability of such small phenylalanine-rich peptides as potential drug-like molecules against this pathogen.  相似文献   
86.

Introduction

Normal and malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew, referred to as stem cells, or tumor initiating cells (TIC). These cells can be enriched by growth as “mammospheres” in three-dimensional cultures.

Objective

We tested the hypothesis that human bone-marrow derived mesenchymal stem cells (MSC), which are known to support tumor growth and metastasis, increase mammosphere formation.

Results

We found that MSC increased human mammary epithelial cell (HMEC) mammosphere formation in a dose-dependent manner. A similar increase in sphere formation was seen in human inflammatory (SUM149) and non-inflammatory breast cancer cell lines (MCF-7) but not in primary inflammatory breast cancer cells (MDA-IBC-3). We determined that increased mammosphere formation can be mediated by secreted factors as MSC conditioned media from MSC spheroids significantly increased HMEC, MCF-7 and SUM149 mammosphere formation by 6.4 to 21-fold. Mammospheres grown in MSC conditioned media had lower levels of the cell adhesion protein, E-cadherin, and increased expression of N-cadherin in SUM149 and HMEC cells, characteristic of a pro-invasive mesenchymal phenotype. Co-injection with MSC in vivo resulted in a reduced latency time to develop detectable MCF-7 and MDA-IBC-3 tumors and increased the growth of MDA-IBC-3 tumors. Furthermore, E-cadherin expression was decreased in MDA-IBC-3 xenografts with co-injection of MSC.

Conclusions

MSC increase the efficiency of primary mammosphere formation in normal and malignant breast cells and decrease E-cadherin expression, a biologic event associated with breast cancer progression and resistance to therapy.  相似文献   
87.
Risperidone has been used in some stress disorders and may be potentially protective against stress-induced gastric lesions. Thus, the aim of the present study is to investigate, whether risperidone, a D(2) receptor and 5-HT(2A) receptor antagonist, would be able to result in gastroprotective effect in stress-induced lesions and also explore the possible mechanism of action behind its gastroprotective activity. Gastroprotective activity of risperidone was evaluated both by single treatment and 21 days repeated (0.03, 0.1, 0.3 and 1mg/kg, p.o.) treatment in the cold restraint stress (CRS) model and 21 days repeated treatment in the pyloric ligation (PL) model and compared with that of sulpiride (D(2) receptor antagonist) and ketanserin (5-HT(2) receptor antagonist) as standard. Histopathological assessment was done to evaluate the gastroprotective activity of risperidone in CRS model. The roles of nitric oxide (NO), sulfhydryl (SH) group, ATP-sensitive K(+) channels (K(ATP) channels) and prostaglandins (PGs) in the gastroprotective effect of risperidone against CRS were also investigated. PGE(2), hexosamine as a marker of mucus barrier and microvascular permeability were also estimated. Results show that repeated treatment of risperidone, sulpiride and ketanserin exhibited a gastroprotective effect against CRS-induced lesions while single administration of risperidone was found to be ineffective. Moreover, repeated treatment of risperidone and ketanserin was found to be ineffective in case of PL in contrast to sulpiride. Risperidone pretreatment reverses the stress induced alteration in hexosamine, PGE(2) and microvascular permeability. Pretreatment with l-NAME, NEM, glibenclamide and indomethacin reversed the gastroprotective effect of risperidone. The results suggest that risperidone has significant gastroprotective effects in CRS-induced gastric lesions models, which appears to be mediated by endogenous NO, SH, PGs and K(ATP) channel opening.  相似文献   
88.
Anterior leaflet (AL) stiffening during isovolumic contraction (IVC) may aid mitral valve closure. We tested the hypothesis that AL stiffening requires atrial depolarization. Ten sheep had radioopaque-marker arrays implanted in the left ventricle, mitral annulus, AL, and papillary muscle tips. Four-dimensional marker coordinates (x, y, z, and t) were obtained from biplane videofluoroscopy at baseline (control, CTRL) and during basal interventricular-septal pacing (no atrial contraction, NAC; 110-117 beats/min) to generate ventricular depolarization not preceded by atrial depolarization. Circumferential and radial stiffness values, reflecting force generation in three leaflet regions (annular, belly, and free-edge), were obtained from finite-element analysis of AL displacements in response to transleaflet pressure changes during both IVC and isovolumic relaxation (IVR). In CTRL, IVC circumferential and radial stiffness was 46 ± 6% greater than IVR stiffness in all regions (P < 0.001). In NAC, AL annular IVC stiffness decreased by 25% (P = 0.004) in the circumferential and 31% (P = 0.005) in the radial directions relative to CTRL, without affecting edge stiffness. Thus AL annular stiffening during IVC was abolished when atrial depolarization did not precede ventricular systole, in support of the hypothesis. The likely mechanism underlying AL annular stiffening during IVC is contraction of cardiac muscle that extends into the leaflet and requires atrial excitation. The AL edge has no cardiac muscle, and thus IVC AL edge stiffness was not affected by loss of atrial depolarization. These findings suggest one reason why heart block, atrial dysrhythmias, or ventricular pacing may be accompanied by mitral regurgitation or may worsen regurgitation when already present.  相似文献   
89.
Because estrogen plays important neurotrophic and neuroprotective roles in the brain by activating estrogen receptors (ERs), disruption of normal estrogen signaling can leave neurons vulnerable to a variety of insults, including β-amyloid peptide (Aβ). Aroclor1254 (A1254) belongs to the endocrine-disrupting chemical (EDC) polychlorinated biphenyls and has anti-estrogenic properties. In the present study, we evaluated the effect of A1254 on the protective activity of estrogen against Aβ toxicity in differentiated cholinergic SN56 cells. Aged Aβ25-35 causes apoptotic cell death in differentiated SN56 cells, and the cytotoxic evidences are effectively rescued by estrogen. We found that A1254 abolishes the neuroprotective activity of estrogen against Aβ toxicity, and attenuates the suppressive effect of estrogen on Aβ-induced tau phosphorylation and JNK activation. The effects of A1254 on the neuroprotective effects of estrogen in Aβ toxicity are very similar to the effects of the estrogen receptor antagonist ICI182,780. Thus, exposure to EDCs that have anti-estrogenic activity might interfere with normal estrogen-activated neuroprotective signaling events and leave neurons more vulnerable to dangerous stimuli. Our present results provide new understanding of the mechanisms contributing to the harmful effects of EDCs on the function and viability of neurons, and the possible relevance of EDCs in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease.  相似文献   
90.
The anterior mitral leaflet (AML) is a thin membrane that withstands high left ventricular (LV) pressure pulses 100,000 times per day. The presence of contractile cells determines AML in vivo stiffness and complex geometry. Until recently, mitral valve finite element (FE) models have neglected both of these aspects. In this study we assess their effect on AML strains and stresses, hypothesizing that these will differ significantly from those reported in literature. Radiopaque markers were sewn on the LV, the mitral annulus, and AML in sheep hearts, and their four-dimensional coordinates obtained with biplane video fluoroscopy. Employing in vivo data from three representative hearts, AML FE models were created from the marker coordinates at the end of isovolumic relaxation assumed as the unloaded reference state. AML function was simulated backward through systole, applying the measured trans-mitral pressure on AML LV surface and marker displacements on AML boundaries. Simulated AML displacements and curvatures were consistent with in vivo measurements, confirming model accuracy. AML circumferential strains were mostly tensile (1-3%), despite being compressive (-1%) near the commissures. Radial strains were compressive in the belly (-1 to -0.2%), and tensile (2-8%) near the free edge. These results differ significantly from those of previous FE models. They reflect the synergy of high tissue stiffness, which limits tensile circumferential strains, and initial compound curvature, which forces LV pressure to compress AML radially. The obtained AML shape may play a role not only in preventing mitral regurgitation, but also in optimizing LV outflow fluid dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号