首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3750篇
  免费   259篇
  国内免费   3篇
  2023年   24篇
  2022年   42篇
  2021年   123篇
  2020年   72篇
  2019年   85篇
  2018年   91篇
  2017年   84篇
  2016年   136篇
  2015年   160篇
  2014年   220篇
  2013年   296篇
  2012年   286篇
  2011年   285篇
  2010年   231篇
  2009年   154篇
  2008年   169篇
  2007年   166篇
  2006年   166篇
  2005年   168篇
  2004年   110篇
  2003年   110篇
  2002年   107篇
  2001年   54篇
  2000年   58篇
  1999年   49篇
  1998年   31篇
  1997年   19篇
  1995年   23篇
  1993年   12篇
  1992年   30篇
  1991年   14篇
  1990年   19篇
  1989年   24篇
  1988年   25篇
  1987年   13篇
  1986年   28篇
  1985年   30篇
  1984年   15篇
  1983年   16篇
  1982年   17篇
  1981年   16篇
  1980年   23篇
  1979年   23篇
  1978年   20篇
  1976年   12篇
  1975年   11篇
  1973年   18篇
  1972年   11篇
  1971年   15篇
  1969年   14篇
排序方式: 共有4012条查询结果,搜索用时 328 毫秒
151.
In the development of osteoarthritis, aggrecan degrades prior to cartilage destruction. Aggrecanase-1 (ADAMTS-4) is considered to be the major enzyme responsible for cleaving the Glu373–Ala374 bond in the interglobular domain of aggrecan in humans. Therefore, inhibitors of ADAMTS-4 have therapeutic potential in the treatment of osteoarthritis. In the present work, we developed a chemical feature based pharmacophore model of ADAMTS-4 inhibitors using the HipHop module within the Catalyst program package in order to elucidate the structure–activity relationship and to carry out in-silico screening. The Maybridge database was screened using Hypo1 as a 3D query, and the best-fit hits that followed Lipinski’s rule of five were subsequently screened to select the compounds. The hit compounds were then docked into the active site of ADAMTS-4, and interactions were visualized to determine the potential lead molecules. After subjecting all of the hits to various screening and filtering processes, 13 compounds were finally evaluated for their in vitro inhibitory activities. This study resulted in the identification of two lead compounds with potent inhibitory effects on ADAMTS-4 activity, with IC50 values of 0.042 μM and 0.028 μM, respectively. These results provide insight into the pharmacophoric requirements for the development of more potent ADAMTS-4 inhibitors.
Graphical Abstract The aggrecan-degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. In this work, we used HipHop-based pharmacophore modeling and virtual screening of the Maybridge database to identify novel ADAMTS-4 inhibitors. These novel lead compounds act as potent and specific inhibitors for the ADAMTS-4 enzyme and could have therapeutic potential in the treatment of OA
  相似文献   
152.
153.
Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.  相似文献   
154.

Background

Association of Mycobacterium avium subspecies paratuberculosis (MAP) and Crohn’s disease (CD) has been controversial due to contradictory reports. Therefore, we determined the prevalence of MAP in patients with CD and intestinal tuberculosis (ITB) and its association with clinical course.

Methodology

Blood and intestinal biopsies were taken from 69 CD, 32 ITB patients and 41 patients with haemorrhoidal bleed who served as controls. qPCR targeting of MAP-specific IS900 gene was used to detect the presence of MAP DNA. qPCR results were further validated by sequencing. Immunohistochemistry (IHC) was used to detect the presence of MAP antigen in biopsy specimens. CD and ITB patients were followed-up for disease course and response to therapy.

Principal Findings

The frequency of MAP-specific DNA in biopsies by qPCR was significantly higher in CD patients (23.2%, p = 0.03) as compared to controls (7.3%). No significant difference in intestinal MAP presence was observed between ITB patients (12.5%, p = 0.6) and controls (7.3%). MAP presence in blood of CD patients was 10.1% as compared to 4.9% in controls while no patients with ITB were found to be positive (p = 0.1). Using IHC for detection of MAP antigen, the prevalence of MAP in CD was 2.9%, 12.5% in ITB patients and 2.4% in controls. However, long-term follow-up of the patients revealed no significant associations between clinical characteristics and treatment outcomes with MAP positivity.

Conclusion

We report significantly high prevalence of MAP in intestinal biopsies of CD patients. However, the presence of MAP does not affect the disease course and treatment outcomes in either CD or ITB patients.  相似文献   
155.
In this study, we conducted an epigenome-wide association study of metabolic syndrome (MetS) among 846 participants of European descent in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). DNA was isolated from CD4+ T cells and methylation at ~470,000 cytosine-phosphate-guanine dinucleotide (CpG) pairs was assayed using the Illumina Infinium HumanMethylation450 BeadChip. We modeled the percentage methylation at individual CpGs as a function of MetS using linear mixed models. A Bonferroni-corrected P-value of 1.1 x 10−7 was considered significant. Methylation at two CpG sites in CPT1A on chromosome 11 was significantly associated with MetS (P for cg00574958 = 2.6x10-14 and P for cg17058475 = 1.2x10-9). Significant associations were replicated in both European and African ancestry participants of the Bogalusa Heart Study. Our findings suggest that methylation in CPT1A is a promising epigenetic marker for MetS risk which could become useful as a treatment target in the future.  相似文献   
156.
The innate immune system critically shapes diabetogenic adaptive immunity during type 1 diabetes (T1D) pathogenesis. While the role of tissue-infiltrating monocyte-derived macrophages in T1D is well established, the role of their tissue-resident counterparts remains undefined. We now demonstrate that islet resident macrophages (IRMs) from non-autoimmune mice have an immunoregulatory phenotype and powerfully induce FoxP3+ Tregs in vitro. The immunoregulatory phenotype and function of IRMs is compromised by TLR4 activation in vitro. Moreover, as T1D approaches in NOD mice, the immunoregulatory phenotype of IRMs is diminished as is their relative abundance compared to immunostimulatory DCs. Our findings suggest that maintenance of IRM abundance and their immunoregulatory phenotype may constitute a novel therapeutic strategy to prevent and/or cure T1D.  相似文献   
157.

Background

Visceral leishmaniasis (VL) is distinguished by a complex interplay of immune response and parasite multiplication inside host cells. However, the direct association between different immunological correlates and parasite numbers remains largely unknown.

Methodology/Principal Findings

We examined the plasma levels of different disease promoting/protective as well as Th17 cytokines and found IL-10, TGFβ and IL-17 to be significantly correlated with parasite load in VL patients (r = 0.52, 0.53 and 0.51 for IL-10, TGFβ and IL-17, respectively). We then extended our investigation to a more antigen-specific response and found leishmanial antigen stimulated levels of both IL-10 and TGFβ to be significantly associated with parasite load (r = 0.71 and 0.72 for IL-10 and TGFβ respectively). In addition to cytokines we also looked for different cellular subtypes that could contribute to cytokine secretion and parasite persistence. Our observations manifested an association between different Treg cell markers and disease progression as absolute numbers of CD4+CD25+ (r = 0.55), CD4+CD25hi (r = 0.61) as well as percentages of CD4+CD25+FoxP3+ T cells (r = 0.68) all correlated with parasite load. Encouraged by these results, we investigated a link between these immunological components and interestingly found both CD4+CD25+ and CD4+CD25+FoxP3+ Treg cells to secrete significantly (p<0.05) higher amounts of not only IL-10 but also TGFβ in comparison to corresponding CD25- T cells.

Conclusions/Significance

Our findings shed some light on source(s) of TGFβ and suggest an association between these disease promoting cytokines and Treg cells with parasite load during active disease. Moreover, the direct evidence of CD4+CD25+FoxP3+ Treg cells as a source of IL-10 and TGFβ during active VL could open new avenues for immunotherapy towards cure of this potentially fatal disease.  相似文献   
158.
Insulin resistance (IR) and type 2 diabetes mellitus (T2DM) have been found to be associated with postprandial hypertriglyceridemia (PPHTg). However, whether PPHTg can cause IR and diabetes is not clear. We therefore investigated the role of PPHTg in development of T2DM in rat model of T2DM. 96 male Wistar rats were randomized into four groups (24 rats each). Control Group A, high sucrose diet (HSD) Group B, HSD+Pioglitazone (10mg/kg/day) Group C and HSD+Atorvastatin (20mg/kg/day) Group D. Fat and glucose tolerance tests were done at regular intervals in all groups besides insulin and body weight measurement. At 26 weeks, low dose streptozotocin (15mg/kg,i.p.) was given to half of the rats. All rats were followed up till 48 weeks. PPHTg developed as early as week 2 in Group B and stabilized by week 14. Group B displayed highest PPHTg compared to other groups. Atorvastatin treatment (Group D) abolished PPHTg which became comparable to controls, pioglitazone treatment partially blunted PPHTg resulting in intermediate PPHTg. Group B with highest PPHTg showed highest subsequent IR, glucose intolerance (GI) and highest incidence of prediabetes at week 26 and diabetes at week 34 and 46 compared to other groups. Group D rats displayed lower IR, GI, low incidence of prediabetes and diabetes at these time points compared to Groups B and C. ROC analysis showed that triglyceride area under the curve of each time point significantly predicts the risk of diabetes. Present study provides the evidence that PPHTg predicts the development of IR, GI and T2DM in rat model of diet induced T2DM.  相似文献   
159.
Sepsis is an exaggerated systemic inflammatory response to persistent bacteria infection with high morbidity and mortality rate clinically. β-arrestin 2 modulates cell survival and cell death in different systems. However, the effect of β-arrestin 2 on sepsis-induced cardiac dysfunction is not yet known. Here, we show that β-arrestin 2 overexpression significantly enhances animal survival following cecal ligation and puncture (CLP)-induced sepsis. Importantly, overexpression of β-arrestin 2 in mice prevents CLP-induced cardiac dysfunction. Also, β-arrestin 2 overexpression dramatically attenuates CLP-induced myocardial gp130 and p38 mitogen-activated protein kinase (MAPK) phosphorylation levels following CLP. Therefore, β-arrestin 2 prevents CLP-induced cardiac dysfunction through gp130 and p38. These results suggest that modulation of β-arrestin 2 might provide a novel therapeutic approach to prevent cardiac dysfunction in patients with sepsis.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号