首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2863篇
  免费   196篇
  国内免费   1篇
  2023年   14篇
  2022年   36篇
  2021年   88篇
  2020年   49篇
  2019年   64篇
  2018年   67篇
  2017年   50篇
  2016年   97篇
  2015年   113篇
  2014年   168篇
  2013年   204篇
  2012年   213篇
  2011年   220篇
  2010年   185篇
  2009年   125篇
  2008年   117篇
  2007年   147篇
  2006年   121篇
  2005年   126篇
  2004年   86篇
  2003年   91篇
  2002年   90篇
  2001年   45篇
  2000年   53篇
  1999年   35篇
  1998年   26篇
  1997年   20篇
  1996年   13篇
  1995年   18篇
  1993年   13篇
  1992年   30篇
  1991年   12篇
  1990年   15篇
  1989年   18篇
  1988年   20篇
  1987年   15篇
  1986年   23篇
  1985年   23篇
  1984年   13篇
  1983年   12篇
  1982年   15篇
  1981年   10篇
  1980年   12篇
  1979年   14篇
  1978年   18篇
  1976年   9篇
  1973年   13篇
  1972年   9篇
  1971年   10篇
  1969年   8篇
排序方式: 共有3060条查询结果,搜索用时 31 毫秒
991.
In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.  相似文献   
992.
993.
A comparative evaluation of As accumulation and subsequent effects upon exposure to arsenite [As(III)] was performed in three species of Ocimum. Plants accumulated high amount of As (μg g?1 dry weight; dw) (662 in O. tenuiflorum, 764 in O. basilicum and 831 in O. gratissimum at 100 μM As(III) after 10 days) with the order of accumulation being roots > stem > leaves. A significant reduction in plant height and biomass was observed. However, essential oil yield and major oil constituents, such as eugenol, methyl chevicol, and linalool, increased at lower As(III) concentrations [mostly up to 25 μM As(III)] in all three species. Positively, no detectable amount of As was found in oil of any species. The study proposes that Ocimum may be used as a phytoremediator and at the same time as a source of essential oils under proper regulation.  相似文献   
994.
The aims of the investigation were to ascertain if surface attachment of Cunninghamella elegans and niche intertidal conditions provided in a bioreactor influenced biotransformation of fluoranthene by C. elegans. A newly designed polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) holding eight equidistantly spaced rectangular strips mounted radially on a circular disc allowed comparison of fluoranthene biotransformation between CCFs with a hydrophobic surface (PMMA-CCF) and a hydrophilic glass surface (GS-CCF) and a 500-ml Erlenmeyer flask (EF). Fluoranthene biotransformation was higher by 22-fold, biofilm growth was higher by 3-fold, and cytochrome P450 gene expression was higher by 2.1-fold when C. elegans was cultivated with 2% inoculum as biofilm culture in PMMA-CCF compared to planktonic culture in EF. Biotransformation was enhanced by 7-fold with 10% inoculum. The temporal pattern of biofilm progression based on three-channel fluorescence detection by confocal laser scanning microscopy demonstrated well-developed, stable biofilm with greater colocalization of fluoranthene within extracellular polymeric substances and filaments of the biofilm grown on PMMA in contrast to a glass surface. A bioreactor with discs rotating at 2 revolutions per day affording 6-hourly emersion and immersion mimicked the niche intertidal habitat of C. elegans and supported biofilm formation and transformation of fluoranthene. The amount of transformed metabolite was 3.5-fold, biofilm growth was 3-fold, and cytochrome P450 gene expression was 1.9-fold higher in the process mimicking the intertidal conditions than in a submerged process without disc rotation. In the CCF and reactor, where biofilm formation was comparatively greater, higher concentration of exopolysaccharides allowed increased mobilization of fluoranthene within the biofilm with consequential higher gene expression leading to enhanced volumetric productivity.  相似文献   
995.
Variability in 41 isolates of Trichoderma belonging to 21 species was observed in the phenolic acid profile of their culture filtrates. The phenolic acid profiles were observed to be very stable in the culture filtrate of Trichoderma species. The similarity in phenolic acid profile was recorded and based on it the species were grouped into three distinct groups, viz. highly similar, moderately similar and least similar. Of the 21 species, seven species showed highly similar trend, whereas two and four species showed moderate and least similarity in their phenolic acid profiles, respectively. Looking into the stability of phenolic acid profile in the culture filtrate of the Trichoderma species the present tool may help in diversity analysis in Trichoderma species originating from different geographical areas.  相似文献   
996.
A total of 82 endophytic bacteria of tomato and chilli was isolated from different locations of tropical Islands of Andaman and Nicobar, India. Based on in vitro screening, 16 bacterial isolates that effectively inhibited Ralstonia solanacearum (a bacterial wilt pathogen) were characterised for their diversity and identified through Microbial Identification System (Biolog). Diversity analysed through BOX-PCR showed low similarity index among the antagonistic bacteria. Based on the in vitro antagonistic activities, the selected isolates were further characterised for siderophore, indole acetic acid production, phosphate solubilisation and other extracellular enzymes; it is found that most of the isolates were positive for these properties. The production of these metabolites may be responsible for the inhibition of the pathogen R. solanacearum. The isolates BECS3, BECS6 and BECS7 showed multiple attributes and demonstrated plant growth promotion properties through tomato- and chilli-based bioassay under greenhouse conditions. These bacterial inoculations were found to result in significant increase in root, shoot and biomass of both tomato and chilli. Hence, these isolates can be further formulated and used for field application.  相似文献   
997.
998.
This study is focused on isolation and characterisation of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas fluorescens isolates from different soils of groundnut-based cropping systems in Andhra Pradesh. In our studies, 21 isolates of P. fluorescens were isolated and confirmed through various biochemical tests, of which five were tested positive for 2,4-DAPGproduction with specific primers. Biocontrol potential of these isolates on groundnut stem rot pathogen (Sclerotium rolfsii) was determined through in vitro dual culture assays. The eight isolates were found effective against S. rolfsii (up to 75% inhibition) in dual culture method. All the five 2,4-DAPG-producing Plant Growth-Promoting Rhizobacteria isolates were highly antagonistic to S. rolfsii. Genetic diversity of these P. fluorescens isolates was determined by random amplification of polymorphic DNA analysis. Overall, our results suggest that the prevalence of 2,4-DAPG-producing fluorescent Pseudomonads in different crop rhizospheres of groundnut-based cropping systems.  相似文献   
999.
1000.
ABSTRACT

This paper presents a critical review of the literature on the application of genetically engineered microorganisms (GEMs) in bioremediation. The important aspects of using GEMs in bioremediation, such as development of novel strains with desirable properties through pathway construction and the modification of enzyme specificity and affinity, are discussed in detail. Particular attention is given to the genetic engineering of bacteria using bacterial hemoglobin (VHb) for the treatment of aromatic organic compounds under hypoxic conditions. The application of VHb technology may advance treatment of contaminated sites, where oxygen availability limits the growth of aerobic bioremediating bacteria, as well as the functioning of oxygenases required for mineralization of many organic pollutants. Despite the many advantages of GEMs, there are still concerns that their introduction into polluted sites to enhance bioremediation may have adverse environmental effects, such as gene transfer. The extent of horizontal gene transfer from GEMs in the environment, compared to that of native organisms including benefits regarding bacterial bioremediation that may occur as a result of such transfer, is discussed. Recent advances in tracking methods and containment strategies for GEMs, including several biological systems that have been developed to detect the fate of GEMs in the environment, are also summarized in this review. Critical research questions pertaining to the development and implementation of GEMs for enhanced bioremediation have been identified and posed for possible future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号