全文获取类型
收费全文 | 4699篇 |
免费 | 290篇 |
国内免费 | 1篇 |
专业分类
4990篇 |
出版年
2022年 | 55篇 |
2021年 | 137篇 |
2020年 | 62篇 |
2019年 | 89篇 |
2018年 | 87篇 |
2017年 | 80篇 |
2016年 | 138篇 |
2015年 | 176篇 |
2014年 | 263篇 |
2013年 | 296篇 |
2012年 | 320篇 |
2011年 | 316篇 |
2010年 | 279篇 |
2009年 | 188篇 |
2008年 | 198篇 |
2007年 | 224篇 |
2006年 | 194篇 |
2005年 | 199篇 |
2004年 | 125篇 |
2003年 | 136篇 |
2002年 | 137篇 |
2001年 | 87篇 |
2000年 | 85篇 |
1999年 | 57篇 |
1998年 | 36篇 |
1997年 | 28篇 |
1996年 | 23篇 |
1995年 | 25篇 |
1993年 | 26篇 |
1992年 | 41篇 |
1991年 | 39篇 |
1990年 | 39篇 |
1989年 | 37篇 |
1988年 | 40篇 |
1987年 | 43篇 |
1986年 | 54篇 |
1985年 | 49篇 |
1984年 | 39篇 |
1983年 | 29篇 |
1982年 | 30篇 |
1981年 | 31篇 |
1980年 | 27篇 |
1979年 | 44篇 |
1978年 | 29篇 |
1977年 | 28篇 |
1976年 | 30篇 |
1975年 | 28篇 |
1973年 | 32篇 |
1972年 | 36篇 |
1971年 | 30篇 |
排序方式: 共有4990条查询结果,搜索用时 15 毫秒
51.
52.
Umesh C. Haldar Sanat K. Saha Ronald C. Beavis Nirmal K. Sinha 《The protein journal》1996,15(2):177-184
Two trypsin inhibitors, LA-1 and LA-2, have been isolated from ridged gourd (Luffa acutangula Linn.) seeds and purified to homogeneity by gel filtration followed by ion-exchange chromatography. The isoelectric point is atpH 4.55 for LA-1 and atpH 5.85 for LA-2. The Stokes radius of each inhibitor is 11.4 å. The fluorescence emission spectrum of each inhibitor is similar to that of the free tyrosine. The biomolecular rate constant of acrylamide quenching is 1.0×109 M?1 sec?1 for LA-1 and 0.8 × 109 M?1 sec?1 for LA-2 and that of K2HPO4 quenching is 1.6×1011 M?1 sec?1 for LA-1 and 1.2×1011M?1 sec?1 for LA-2. Analysis of the circular dichroic spectra yields 40%α-helix and 60%Β-turn for La-1 and 45%α-helix and 55%Β-turn for LA-2. Inhibitors LA-1 and LA-2 consist of 28 and 29 amino acid residues, respectively. They lack threonine, alanine, valine, and tryptophan. Both inhibitors strongly inhibit trypsin by forming enzymeinhibitor complexes at a molar ratio of unity. A chemical modification study suggests the involvement of arginine of LA-1 and lysine of LA-2 in their reactive sites. The inhibitors are very similar in their amino acid sequences, and show sequence homology with other squash family inhibitors. 相似文献
53.
Sinha P Okoro C Foell D Freeze HH Ostrand-Rosenberg S Srikrishna G 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(7):4666-4675
Chronic inflammation is a complex process that promotes carcinogenesis and tumor progression; however, the mechanisms by which specific inflammatory mediators contribute to tumor growth remain unclear. We and others recently demonstrated that the inflammatory mediators IL-1beta, IL-6, and PGE(2) induce accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing individuals. MDSC impair tumor immunity and thereby facilitate carcinogenesis and tumor progression by inhibiting T and NK cell activation, and by polarizing immunity toward a tumor-promoting type 2 phenotype. We now show that this population of immature myeloid cells induced by a given tumor share a common phenotype regardless of their in vivo location (bone marrow, spleen, blood, or tumor site), and that Gr1(high)CD11b(high)F4/80(-)CD80(+)IL4Ralpha(+/-)Arginase(+) MDSC are induced by the proinflammatory proteins S100A8/A9. S100A8/A9 proteins bind to carboxylated N-glycans expressed on the receptor for advanced glycation end-products and other cell surface glycoprotein receptors on MDSC, signal through the NF-kappaB pathway, and promote MDSC migration. MDSC also synthesize and secrete S100A8/A9 proteins that accumulate in the serum of tumor-bearing mice, and in vivo blocking of S100A8/A9 binding to MDSC using an anti-carboxylated glycan Ab reduces MDSC levels in blood and secondary lymphoid organs in mice with metastatic disease. Therefore, the S100 family of inflammatory mediators serves as an autocrine feedback loop that sustains accumulation of MDSC. Since S100A8/A9 activation of MDSC is through the NF-kappaB signaling pathway, drugs that target this pathway may reduce MDSC levels and be useful therapeutic agents in conjunction with active immunotherapy in cancer patients. 相似文献
54.
Chloroplasts are the sites of photosynthesis in plants, and they contain their own multicopy, requisite genome. Chloroplasts are also major sites for production of reactive oxygen species, which can damage essential components of the chloroplast, including the chloroplast genome. Compared with mitochondria in animals, relatively little is known about the potential to repair oxidative DNA damage in chloroplasts. Here we provide evidence of DNA glycosylase-lyase/endonuclease activity involved in base excision repair of oxidized pyrimidines in chloroplast protein extracts of Arabidopsis thaliana. Three base excision repair components (two endonuclease III homologs and an apurinic/apyrimidinic endonuclease) that might account for this activity were identified by bioinformatics. Transient expression of protein-green fluorescent protein fusions showed that all three are targeted to the chloroplast and co-localized with chloroplast DNA in nucleoids. The glycosylase-lyase/endonuclease activity of one of the endonuclease III homologs, AtNTH2, which had not previously been characterized, was confirmed in vitro. T-DNA insertions in each of these genes were identified, and the physiological and biochemical phenotypes of the single, double, and triple mutants were analyzed. This mutant analysis revealed the presence of a third glycosylase activity and potentially another pathway for repair of oxidative DNA damage in chloroplasts.Reactive oxygen species (ROS)2 are inevitable by-products of metabolism in all aerobic organisms (1). Plants and algae are especially prone to photo-oxidative stress because of ROS generated during oxygenic photosynthesis. Several types of ROS are generated at various sites in the photosynthetic electron transport chain in chloroplasts, and their production is enhanced by such factors as excess or varying light intensities and extremes of temperature, drought, nutrient deficiencies, and herbicides (2). These ROS can damage many chloroplast constituents, including lipids, proteins, pigments, and the multicopy genome.Plants have evolved numerous mechanisms to deal with photo-oxidative stress, including dissipation of excess light energy, synthesis of antioxidant molecules and scavenging enzymes, and targeted repair (2). DNA repair of oxidized bases, such as thymine glycol (TG) or 8-oxoguanine, can be hypothesized as an important element of chloroplast photoprotection. Although there is considerable overlap in both the types of DNA lesions caused by different insults and the targeting of different DNA repair mechanisms, base excision repair (BER) is considered to be the main repair pathway for oxidative DNA damage, at least in the nucleus and mitochondrion (3, 4).BER repairs single damaged bases (because of oxidation, deamination, alkylation, etc.) in DNA by removing them, breaking the phosphodiester backbone, excising the sugar residue at the abasic site, and filling the gap (reviewed in Refs. 5, 6). BER begins with a DNA glycosylase or glycosylase-lyase. There are many types of glycosylases in any given organism and across taxa, and they are distinguishable by their substrate specificity, whether they are monofunctional (glycosylase activity only) or bifunctional (glycosylase plus apurinic/apyrimidinic (AP) lyase activities; see below), by the phylogenetic family in which they reside, and/or by conserved structural characteristics (reviewed in Refs. 6–8). The glycosylases involved in BER of oxidative DNA damage can be roughly divided into those that target either oxidized purines or oxidized pyrimidines (4, 9). For example, TG is a common type of oxidized pyrimidine, which is removed primarily by endonuclease III (Nth), endonuclease VIII (Nei), or their homologs (10). TG is only poorly mutagenic, but it strongly blocks polymerases, inducing cell cycle arrest and potentially cell death if it is not removed.After an appropriate glycosylase cleaves the N-glycosyl bond attaching a damaged base to deoxyribose, leaving an abasic site, the sugar-phosphate backbone is nicked. Bifunctional glycosylases also have an AP lyase activity that cleaves on the 3′ side of the AP site. However, the site still requires the function of a separate AP endonuclease that cuts on the 5′ side of the AP site to remove the 3′-deoxyribose residue at the nick site (11) before repair can continue. In the case of a monofunctional glycosylase, an AP endonuclease nicks the strand on the 5′ side of the AP site. Escherichia coli has two unrelated AP endonucleases, exonuclease III (Xth) and endonuclease IV (Nfo). In humans Ape1/Ref-1 is an Xth homolog, and in yeast Apn1p is an Nfo homolog (5, 12). Following generation of the AP site and nicking of the backbone, the gap is filled by a polymerase in either a short or long patch and then sealed by a ligase.BER of oxidative DNA lesions such TG has been studied intensively in E. coli, yeast, and mammals, whereas comparatively little is known about BER in plants. For example, only two genes involved in BER of oxidized pyrimidines have been characterized previously in the model plant Arabidopsis thaliana (13, 14), and their localization within the plant cell is unknown. An Nth homolog in Arabidopsis, AtNTH1 (At2g31450), has the expected bifunctional glycosylase-lyase activity in vitro (14). The ARP gene (At2g41460) in Arabidopsis encodes an enzyme with AP endonuclease activity (13).Here we present the results of experiments conducted to address whether there is BER of oxidized pyrimidines in the Arabidopsis chloroplast. Chloroplast protein extracts were assayed for glycosylase-lyase/endonuclease activity. The chloroplast localization of ARP, AtNTH1, and AtNTH2, a second Arabidopsis homolog of Nth, was tested experimentally, and the predicted activity of AtNTH2 was confirmed in vitro. In addition, an analysis of T-DNA insertion mutants affecting each of these three BER genes was performed. 相似文献
55.
Yadlapalli RK Chourasia OP Vemuri K Sritharan M Perali RS 《Bioorganic & medicinal chemistry letters》2012,22(8):2708-2711
A series of dihydropyrimidine derivatives were synthesized by utilizing Biginelli reaction and evaluated for their in vitro anticancer activity against MCF-7 human breast cancer (HBC) cell line using sulforhodamine B (SRB) assay and antitubercular activity against Mycobacterium tuberculosis (MTB) H(37)Rv using Microplate Alamar Blue Assay (MABA). Compounds 13p, 13t were exhibited 70.6% and 63.7% of HBC cell growth inhibition at 10 μM concentration. Interestingly compound 13p was also found to be the most potent in the series against MTB H(37)Rv with MIC value of 0.125 μg/mL. 相似文献
56.
A Copeland A Zeytun M Yassawong M Nolan S Lucas N Hammon S Deshpande JF Cheng C Han R Tapia LA Goodwin S Pitluck K Mavromatis K Liolios I Pagani N Ivanova N Mikhailova A Pati A Chen K Palaniappan M Land L Hauser CD Jeffries EM Brambilla M Rohde J Sikorski R Pukall M Göker JC Detter T Woyke J Bristow JA Eisen V Markowitz P Hugenholtz NC Kyrpides HP Klenk A Lapidus 《Standards in genomic sciences》2012,6(2):240-250
Deinococcus proteolyticus (ex Kobatake et al. 1973) Brook and Murray 1981 is one of currently 47 species in the genus Deinococcus within the family Deinococcaceae. Strain MRP(T) was isolated from feces of Lama glama and possesses extreme radiation resistance, a trait is shares with various other species of the genus Deinococcus, with D. proteolyticus being resistant up to 1.5 Mrad of gamma radiation. Strain MRP(T) is of further interest for its carotenoid pigment. The genome presented here is only the fifth completed genome sequence of a member of the genus Deinococcus (and the forth type strain) to be published, and will hopefully contribute to a better understanding of how members of this genus adapted to high gamma- or UV ionizing-radiation. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,886,836 bp long genome with its four large plasmids of lengths 97 kbp, 132 kbp, 196 kbp and 315 kbp harbors 2,741 protein-coding and 58 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 相似文献
57.
Larry J. Heilmann Patrick M. Trewitt A. Krishna Kumaran 《Archives of insect biochemistry and physiology》1993,23(3):125-134
The soluble proteins of the eggs of the coleopteran insect Anthonomus grandis Boheman, the cotton boll weevil, consist almost entirely of two vitellin types with Mrs of 160,000 and 47,000. We sequenced their N-terminal ends and one internal cyanogen bromide fragment of the large vitellin and compared these sequences with the deduced amino acid sequence from the vitellogenin gene. The results suggest that both the boll weevil vitellin proteins are products of the proteolytic cleavage of a single precursor protein. The smaller 47,000 M vitellin protein is derived from the N-terminal portion of the precursor adjacent to an 18 amino acid signal peptide. The cleavage site between the large and small vitellins at amino acid 362 is adjacent to a pentapeptide sequence containing two pairs of arginine residues. Comparison of the boll weevil sequences with limited known sequences from the single 180,000 Mr honey bee protein show that the honey bee vitellin N-terminal exhibits sequence homology to the N-terminal of the 47,000 Mr boll weevil vitellin. Treatment of the vitellins with an N-glycosidase results in a decrease in molecular weight of both proteins, from 47,000 to 39,000 and from 160,000 to 145,000, indicating that about 10–15% of the molecular weight of each vitellin consists of N-linked carbohydrate. The molecular weight of the deglycosylated large vitellin is smaller than that predicted from the gene sequence, indicating possible further proteolytic processing at the C-terminal of that protein. © 1993 Wiley-Liss, Inc. 1 This article is a US Government work and, as such, is in the public domain in the United States of America. 相似文献
58.
Ghosh D Bhattacharya B Mukherjee B Manna B Sinha M Chowdhury J Chowdhury S 《The Journal of nutritional biochemistry》2002,13(11):690-697
Type 2 diabetes mellitus is a complex metabolic disorder with adverse cardiovascular risk. The role of micronutrients has not yet been well clarified in this condition, especially in India.THE OBJECTIVES OF THIS STUDY WERE TO: (1) evaluate chromium status in Indian subjects with type 2 diabetes mellitus, (2) assess the effect of chromium picolinate (200 &mgr;g trivalent chromium twice daily) administration on glycaemic control and lipid profile in these subjects and (3) comment on the possible mechanism of any beneficial effect noted above.Fifty subjects were studied in a double blind, placebo-controlled, crossover fashion, with each treatment arm (chromium/placebo) lasting 12 weeks and 4 weeks' wash-off period in between. 50 healthy age- and sex-matched volunteers served as controls. Serum chromium level appeared to be higher in the general population in our country compared to western countries (36.5-59.5 nmol/L as compared to 2.3-40.3 nmol/L) However, the local diabetics were found to have a lower serum chromium level than the healthy controls (32.3 nmol/L against 44.7 nmol/L; p < 0.0001) and a mean increase of 3.5 nmol/L was noted after 12 weeks of chromium supplementation that was, expectedly, not seen in the placebo phase (p < 0.0001).Significant improvement in glycaemic control was noted in the chromium-treated group (DeltaFasting serum glucose = 0.44 mmol/L, p < 0.001; DeltaPost-prandial serum glucose = 1.97 mmol/L, p < 0.001; Deltaglycated hemoglobin = 0.01; p = 0.04, in comparison to placebo) This was accompanied by a significant greater fall in fasting serum insulin in the chromium-treated group, p < 0.05.The change in lipid parameters (total serum cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol and triglycerides) did not show significant difference between the chromium and placebo groups.Clinically significant hematological, renal or hepatic toxicity were excluded by routine hemogram, serum urea, creatinine, alanine amino transferase (ALT) and alkaline phosphatase estimations.In conclusion, chromium supplementation seems to improve glycaemic control in type 2 diabetic patients, which appears to be due to an increase in insulin action rather than stimulation of insulin secretion. 相似文献
59.
Sigamani Ashokkumar Arunai Nambiraj Sujit Nath Sinha Girigesh Yadav Kothanda Raman Manindra Bhushan Rajesh Thiyagarajan 《Reports of Practical Oncology and Radiotherapy》2015,20(3):170-180
Aim
To measure and compare the head scatter factor for 7 MV unflattened and 6 MV flattened photon beam using a home-made designed mini phantom.Background
The head scatter factor (Sc) is one of the important parameters for MU calculation. There are multiple factors that influence the Sc values, like accelerator head, flattening filter, primary and secondary collimators.Materials and methods
A columnar mini phantom was designed as recommended by AAPM Task Group 74 with high and low atomic number material for measurement of head scatter factors at 10 cm and dmax dose water equivalent thickness.Results
The Sc values measured with high-Z are higher than the low-Z mini phantoms observed for both 6MV-FB and 7MV-UFB photon energies. Sc values of 7MV-UFB photon beams were smaller than those of the 6MV-FB photon beams (0.6–2.2% (Primus), 0.2–1.4% (Artiste) and 0.6–3.7% (Clinac iX (2300CD))) for field sizes ranging from 10 cm × 10 cm to 40 cm × 40 cm. The SSD had no influence on head scatter for both flattened and unflattened beams. The presence of wedge filters influences the Sc values. The collimator exchange effects showed that the opening of the upper jaw increases Sc irrespective of FF and FFF.Conclusions
There were significant differences in Sc values measured for 6MV-FB and unflattened 7MV-UFB photon beams over the range of field sizes from 10 cm × 10 cm to 40 cm × 04 cm. Different results were obtained for measurements performed with low-Z and high-Z mini phantoms. 相似文献60.
Xia S Wang M Lee HR Sinha A Blaha G Christian T Wang J Konigsberg W 《Journal of molecular biology》2011,406(4):558-10149
We have previously observed that stepwise replacement of amino acid residues in the nascent base-pair binding pocket of RB69 DNA polymerase (RB69pol) with Ala or Gly expanded the space in this pocket, resulting in a progressive increase in misincorporation. However, in vivo results with similar RB69pol nascent base-pair binding pocket mutants showed that mutation rates, as determined by the T4 phage rI forward assay and rII reversion assay, were significantly lower for the RB69pol S565G/Y567A double mutant than for the Y567A single mutant, the opposite of what we would have predicted. To investigate the reasons for this unexpected result, we have determined the pre-steady-state kinetic parameters and crystal structures of relevant ternary complexes. We found that the S565G/Y567A mutant generally had greater base selectivity than the Y567A mutant and that the kinetic parameters for dNMP insertion, excision of the 3′-terminal nucleotide residue, and primer extension beyond a mispair differed not only between these two mutants but also between the two highly mutable sequences in the T4 rI complementary strand. Comparison of the crystal structures of these two mutants with correct and incorrect incoming dNTPs provides insight into the unexpected increase in the fidelity of the S565G/Y567A double mutant. Taken together, the kinetic and structural results provide a basis for integrating and interpreting in vivo and in vitro observations. 相似文献