首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4687篇
  免费   267篇
  国内免费   4篇
  4958篇
  2023年   26篇
  2022年   58篇
  2021年   118篇
  2020年   73篇
  2019年   94篇
  2018年   104篇
  2017年   74篇
  2016年   148篇
  2015年   188篇
  2014年   250篇
  2013年   327篇
  2012年   347篇
  2011年   383篇
  2010年   272篇
  2009年   195篇
  2008年   209篇
  2007年   232篇
  2006年   223篇
  2005年   212篇
  2004年   151篇
  2003年   154篇
  2002年   156篇
  2001年   72篇
  2000年   78篇
  1999年   67篇
  1998年   40篇
  1997年   28篇
  1996年   22篇
  1995年   35篇
  1994年   16篇
  1993年   25篇
  1992年   50篇
  1991年   30篇
  1990年   29篇
  1989年   36篇
  1988年   40篇
  1987年   23篇
  1986年   34篇
  1985年   35篇
  1984年   21篇
  1983年   17篇
  1982年   23篇
  1981年   19篇
  1980年   22篇
  1979年   21篇
  1978年   25篇
  1977年   14篇
  1976年   15篇
  1974年   13篇
  1973年   15篇
排序方式: 共有4958条查询结果,搜索用时 15 毫秒
31.
The marine cyanobacterium Phormidium valderianum BDU 140441 exhibited the ability to grow at 0.25?mM tannic acid, a known hindering chemical for microbial growth. The tannic acid-degrading ability of the organism is evident from the UV–visible absorption spectrum. In addition, the existence of tannase has been localized by activity staining, and its induction in activity upon tannic acid exposure was confirmed in native gel. The critical tannic acid metabolization enzymes tested for are polyphenol oxidase and esterases; both are well known for tannic acid degradation. Upon tannic acid exposure, increased activity of polyphenol oxidase and expression of few new isoforms of esterase were identified by activity staining.  相似文献   
32.
33.
Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed‐effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the other set of effects. We propose simultaneous selection of the fixed and random factors in an LME model using a modified Cholesky decomposition. Our method is based on a penalized joint log likelihood with an adaptive penalty for the selection and estimation of both the fixed and random effects. It performs model selection by allowing fixed effects or standard deviations of random effects to be exactly zero. A constrained expectation–maximization algorithm is then used to obtain the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle property, in that, asymptotically it performs as well as if the true model was known beforehand. We demonstrate the performance of our method based on a simulation study and a real data example.  相似文献   
34.
The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.  相似文献   
35.
Mycopathologia - In experimental models, the expression of glucose-regulated protein 78 (GRP78) in endothelial cells played a role in the pathogenesis of mucormycosis. However, the role of GRP78 in...  相似文献   
36.
Kumar GN  Iyer S  Knowles NR 《Planta》2007,227(1):25-36
During 30-months of storage at 4°C, potato (Solanum tuberosum L.) tubers progressively lose the ability to produce superoxide in response to wounding, resist microbial infection, and develop a suberized wound periderm. Using differentially aged tubers, we demonstrate that Strboh A is responsible for the wound-induced oxidative burst in potato and aging attenuates its expression. In vivo superoxide production and NADPH oxidase (NOX) activity from 1-month-old tubers increased to a maximum 18–24 h after wounding and then decreased to barely detectable levels by 72 h. Wounding also induced a 68% increase in microsomal protein within 18 h. These wound-induced responses were lost over a 25- to 30-month storage period. Superoxide production and NOX activity were inhibited by diphenylene iodonium chloride, a specific inhibitor of NOX, which in turn effectively inhibited wound-healing and increased susceptibility to microbial infection and decay in 1-month-old tubers. Wound-induced superoxide production was also inhibited by EGTA-mediated destabilization of membranes. The ability to restore superoxide production to EGTA-treated tissue with Ca+2 declined with advancing tuber age, likely a consequence of age-related changes in membrane architecture. Of the five homologues of NOX (Strboh A-D and F), wounding induced the expression of Strboh A in 6-month-old tubers but this response was absent in tubers stored for 25–30 months. Strboh A thus mediates the initial burst of superoxide in response to wounding of potato tubers; loss of its expression increases the susceptibility to microbial infection and contributes to the age-induced loss of wound-healing ability.  相似文献   
37.
Stimulation of -adrenergic receptors (-AR) induces apoptosis in adult rat ventricular myocytes (ARVMs) via the JNK-dependent activation of mitochondrial death pathway. Recently, we have shown that inhibition of matrix metalloproteinase-2 (MMP-2) inhibits -AR-stimulated apoptosis and that the apoptotic effects of MMP-2 are possibly mediated via its interaction with 1 integrins. Herein we tested the hypothesis that MMP-2 impairs 1 integrin-mediated survival signals, such as activation of focal adhesion kinase (FAK), and activates the JNK-dependent mitochondrial death pathway. Inhibition of MMP-2 using SB3CT, a selective gelatinase inhibitor, significantly increased FAK phosphorylation (Tyr-397 and Tyr-576). TIMP-2, tissue inhibitor of MMP-2, produced a similar increase in FAK phosphorylation, whereas treatment of ARVMs with purified active MMP-2 significantly inhibited FAK phosphorylation. Inhibition of MMP-2 using SB3CT inhibited -AR-stimulated activation of JNKs and levels of cytosolic cytochrome c. Treatment of ARVMs with purified MMP-2 increased cytosolic cytochrome c release. Furthermore, inhibition of MMP-2 using SB3CT and TIMP-2 attenuated -AR-stimulated decreases in mitochondrial membrane potential. Overexpression of 1 integrins using adenoviruses expressing the human 1A-integrin decreased -AR-stimulated cytochrome c release and apoptosis. Overexpression of 1 integrins also inhibited apoptosis induced by purified active MMP-2. These data suggest that MMP-2 interferes with the 1 integrin survival signals and activates JNK-dependent mitochondrial death pathway leading to apoptosis. matrix metalloproteinases; focal adhesion kinase; c-Jun NH2-terminal kinase; cytochrome c  相似文献   
38.
The cytochalasin B (CYB)-blocked binucleated cell assay has been explored to analyze micronuclei and cell cycle kinetics using 2 known mutagenic carcinogens in V79 Chinese hamster lung cells. To determine the optimum time to obtain the maximum number of binucleated cells for micronucleus analysis, duplicate cultures of exponentially growing cells were treated with 3 micrograms/ml CYB for varying durations (8-48 h). A peak appearance of binucleated cells at 16 h in the presence of CYB suggested this as an optimum time for micronucleus analysis in binucleated V79 cells. To evaluate the capacity for induction of micronuclei in V79 cells, 2 mutagenic carcinogens, mitomycin C (0.125-1.0 micrograms/ml) and cyclophosphamide (2-12 micrograms/ml) were tested in duplicate cultures. Mitomycin C, a direct-acting alkylating agent, caused approximately an 18-fold increase in micronucleus frequency over controls at the highest concentration tested (1.0 micrograms/ml), and this increase occurred in a dose-related manner (r = 0.92). The concentrations of mitomycin C tested also caused a significant dose-related cell cycle delay, thus suggesting cytotoxicity to V79 cells. Cyclophosphamide, an indirect-acting alkylating agent, requiring the presence of S9 mix, caused approximately a 17-fold increase in micronucleus frequency over controls at the highest tested concentration (12 micrograms/ml), with a clear dose response (r = 0.99). The various concentrations of cyclophosphamide also caused cytotoxicity in a dose-related fashion. Thus, this study demonstrates the usefulness of the cytokinesis-block method in V79 cells as a possible screen to analyze micronucleus induction and cytotoxicity. Because this approach is much less labor intensive than conducting a structural chromosomal analysis, this assay has great potential both as an initial screen for clastogenic activity and as a tool for investigating the underlying mechanisms for clastogenicity.  相似文献   
39.
The 20-kDa regulatory myosin light chain (MLC), also known as MLC-2, plays an important role in the regulation of both smooth muscle and nonmuscle cell contractile activity. Phosphorylation of MLC-2 by the enzyme MLC kinase increases the actin-activated myosin ATPase activity and thereby regulates the contractile activity. We have isolated and characterized an MLC-2 cDNA corresponding to the human vascular smooth muscle MLC-2 isoform from a cDNA library derived from umbilical artery RNA. The translation of the in vitro synthesized mRNA, corresponding to the cDNA insert, in a rabbit reticulocyte lysate results in the synthesis of a 20,000-dalton protein that is immunoreactive with antibodies raised against purified chicken gizzard MLC-2. The derived amino acid sequence of the putative human smooth muscle MLC-2 shows only three amino acid differences when compared to chicken gizzard MLC-2. However, comparison with the human cardiac isoform reveals only 48% homology. Blot hybridizations and S1 nuclease analysis indicate that the human smooth muscle MLC-2 isoform is expressed restrictively in smooth muscle tissues such as colon and uterus and in some, but not all, nonmuscle cell lines. Previously reported MLC-2 cDNA from rat aortic smooth muscle cells in culture is ubiquitously expressed in all muscle and nonmuscle cells, and it was suggested that both smooth muscle and nonmuscle MLC-2 proteins are identical and are probably encoded by the same gene. In contrast, the human smooth muscle MLC-2 cDNA that we have characterized from an intact smooth muscle tissue is not expressed in skeletal and cardiac muscles and also in a number of nonmuscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号