首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3200篇
  免费   193篇
  国内免费   1篇
  3394篇
  2023年   15篇
  2022年   43篇
  2021年   99篇
  2020年   57篇
  2019年   76篇
  2018年   77篇
  2017年   61篇
  2016年   107篇
  2015年   125篇
  2014年   180篇
  2013年   222篇
  2012年   252篇
  2011年   238篇
  2010年   214篇
  2009年   133篇
  2008年   139篇
  2007年   163篇
  2006年   138篇
  2005年   136篇
  2004年   91篇
  2003年   98篇
  2002年   103篇
  2001年   45篇
  2000年   55篇
  1999年   42篇
  1998年   27篇
  1997年   18篇
  1996年   12篇
  1995年   19篇
  1993年   13篇
  1992年   25篇
  1991年   12篇
  1990年   15篇
  1989年   17篇
  1988年   20篇
  1986年   23篇
  1985年   31篇
  1984年   16篇
  1983年   9篇
  1982年   15篇
  1981年   12篇
  1980年   14篇
  1979年   16篇
  1978年   18篇
  1976年   9篇
  1973年   15篇
  1972年   10篇
  1971年   11篇
  1970年   15篇
  1964年   17篇
排序方式: 共有3394条查询结果,搜索用时 0 毫秒
271.
A mononuclear 1:1 copper complex of curcumin had been found to be superior to curcumin in its anti-oxidant properties. This paper describes the radio-protective effects of the complex in splenic lymphocytes from swiss mice. The complex was found to be very effective in protecting the cells against radiation-induced suppression of glutathione peroxidase, catalase and superoxide dismutase (SOD) activities. Both curcumin and the complex protected radiation-induced protein carbonylation and lipid peroxidation in lymphocytes with the complex showing better protection than curcumin. It also showed better overall protection by decreasing the radiation-induced apoptosis. The kinetics of activation of PKCdelta and NFkappaB after irradiation in presence or absence of these compounds was looked at to identify the molecular mechanism involved. The modulation of irradiation-induced activation of PKCdelta and NFkappaB by curcumin and the complex was found different at later time periods although the initial response was similar. The early responses could be mere stress responses and the activation of crucial signaling factors at later time periods may be the determinants of the fate of the cell. In this study this delayed effect was observed in case of complex but not in case of curcumin. The delayed effect of the complex along with the fact that it is a better free radical scavenger must be the reason for its better efficacy. The complex was also found to be less cytotoxic then curcumin at similar concentration.  相似文献   
272.
In humans, the molecular mechanisms underlying ovarian follicle endowment and activation, which are closely related to the control of female reproduction, occurrence of menopause, and related diseases such as premature ovarian failure, are poorly understood. In the current study, we provide several lines of genetic evidence that the cyclin-dependent kinase (Cdk) inhibitor 1B (commonly known as p27(kip1) or p27) controls ovarian development in mice by suppressing follicle endowment and activation, and by promoting follicle death. In p27-deficient (p27(-/-)) mice, postnatal follicle assembly was accelerated, and the number of endowed follicles was doubled as compared with p27(+/+) mice. Moreover, in p27(-/-) ovaries the primordial follicle pool was prematurely activated once it was endowed, and at the same time the massive follicular death that occurs before sexual maturity was rescued by loss of p27. In early adulthood, however, the overactivated follicular pool in p27(-/-) ovaries was largely depleted, causing premature ovarian failure. Furthermore, we have extensively studied the molecular mechanisms underlying the above-mentioned phenotypes seen in p27(-/-) ovaries and have found that p27 controls follicular development by several distinct mechanisms at different stages of development of the ovary. For example, p27 controls oocyte growth by suppressing the functions of Cdk2/Cdc2-cyclin A/E1 in oocytes that are arrested at the diplotene stage of meiosis I. This function of p27 is distinct from its well-known role as a suppressor of cell cycle progression. In addition, we have found that p27 activates the caspase-9-caspase-3-caspase-7-poly (ADP-ribose) polymeraseapoptotic cascade by inhibiting Cdk2/Cdc2-cyclin A/B1 kinase activities in follicles, thereby inducing follicle atresia. Our results suggest that the p27 gene is important in determining mammalian ovarian development. This study therefore provides insight into ovary-borne genetic aberrations that cause defects in folliculogenesis and infertility in humans.  相似文献   
273.
274.
275.
Moraxella catarrhalis is an important pathogen in patients with chronic obstructive lung disease (COPD). While M. catarrhalis has been categorized as an extracellular bacterium so far, the potential to invade human respiratory epithelium has not yet been explored. Our results obtained by electron and confocal microscopy demonstrated a considerable potential of M. catarrhalis to invade bronchial epithelial (BEAS-2B) cells, type II pneumocytes (A549) and primary small airway epithelial cells (SAEC). Moraxella invasion was dependent on cellular microfilament as well as on bacterial viability, and characterized by macropinocytosis leading to the formation of lamellipodia and engulfment of the invading organism into macropinosomes, thus indicating a trigger-like uptake mechanism. In addition, the cells examined expressed TLR2 as well as NOD1, a recently found cytosolic protein implicated in the intracellular recognition of bacterial cell wall components. Importantly, inhibition of TLR2 or NOD1 expression by RNAi significantly reduced the M. catarrhalis-induced IL-8 secretion. The role of TLR2 and NOD1 was further confirmed by overexpression assays in HEK293 cells. Overall, M. catarrhalis may employ lung epithelial cell invasion to colonize and to infect the respiratory tract, nonetheless, the bacteria are recognized by cell surface TLR2 and the intracellular surveillance molecule NOD1.  相似文献   
276.
Neurochemical Research - Tetrahydrobiopterin (BH4) is a multifunctional co-factor of various enzymes and a substantial amount of studies have shown BH4 as a key regulator in the synthesis of...  相似文献   
277.
278.
279.
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号