首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1095篇
  免费   81篇
  1176篇
  2023年   8篇
  2022年   13篇
  2021年   29篇
  2020年   17篇
  2019年   29篇
  2018年   20篇
  2017年   16篇
  2016年   44篇
  2015年   61篇
  2014年   62篇
  2013年   87篇
  2012年   78篇
  2011年   107篇
  2010年   59篇
  2009年   46篇
  2008年   65篇
  2007年   73篇
  2006年   54篇
  2005年   72篇
  2004年   57篇
  2003年   39篇
  2002年   45篇
  2001年   9篇
  2000年   4篇
  1999年   10篇
  1998年   3篇
  1997年   9篇
  1996年   4篇
  1995年   1篇
  1994年   8篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   7篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   9篇
  1984年   2篇
  1983年   3篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1957年   1篇
排序方式: 共有1176条查询结果,搜索用时 15 毫秒
991.
The role of Th17 cells in cancer patients remains unclear and controversial. In this study, we have analyzed the phenotype of in vitro primed Th17 cells and further characterized their function on the basis of CCR4 and CCR6 expression. We show a novel function for a subset of IL-17-secreting CD4(+) T cells, namely, CCR4(+)CCR6(+)Th17 cells. When cultured together, CCR4(+)CCR6(+)Th17 cells suppressed the lytic function, proliferation, and cytokine secretion of both Ag-specific and CD3/CD28/CD2-stimulated autologous CD8(+) T cells. In contrast, CCR4(-)CCR6(+) CD4(+) T cells, which also secrete IL-17, did not affect the CD8(+) T cells. Suppression of CD8(+) T cells by CCR4(+)CCR6(+)Th17 cells was partially dependent on TGF-β, because neutralization of TGF-β in cocultures reversed their suppressor function. In addition, we also found an increase in the frequency of CCR4(+)CCR6(+), but not CCR4(-)CCR6(+) Th17 cells in peripheral blood of hepatocellular carcinoma patients. Our study not only underlies the importance of analysis of subsets within Th17 cells to understand their function, but also suggests Th17 cells as yet another immune evasion mechanism in hepatocellular carcinoma. This has important implications when studying the mechanisms of carcinogenesis, as well as designing effective immunotherapy protocols for patients with cancer.  相似文献   
992.
Rational design based on a pharmacophore of CCR2 antagonists reported in the literature identified lead compound 9a with potent inhibitory activity against human CCR2 (hCCR2) but moderate activity against murine CCR2 (mCCR2). Modification on 9a led to the discovery of a potent CCR2 antagonist 21 (INCB3344) with IC(50) values of 5.1 nM (hCCR2) and 9.5 nM (mCCR2) in binding antagonism and 3.8 nM (hCCR2) and 7.8 nM (mCCR2) in antagonism of chemotaxis activity. INCB3344 exhibited >100-fold selectivity over other homologous chemokine receptors, a free fraction of 24% in human serum and 15% in mouse serum, and an oral bioavailability of 47% in mice, suitable as a tool compound for target validation in rodent models.  相似文献   
993.
Interleukin-13 (IL-13) has been linked to the pathogenesis of inflammatory diseases of the gastrointestinal tract. It is postulated that IL-13 drives inflammatory lesions through the modulation of both hematopoietic and nonhematopoietic cell function in the intestine. To delineate the relevant contribution of elevated levels of intestinal IL-13 to intestinal structure and function, we generated an intestinal IL-13 transgenic mouse (iIL-13Tg). We show that constitutive overexpression of IL-13 in the small bowel induces modification of intestinal epithelial architecture (villus blunting, goblet cell hyperplasia, and increased epithelial proliferation) and epithelial function (altered basolateral → apical Cl(-) ion conductance). Pharmacological analyses in vitro and in vivo determined that elevated Cl(-) conductance is mediated by altered cystic fibrosis transmembrane conductance regulator expression and activity. Generation of iIL-13Tg/Il13rα1(-/-), iIL-13Tg/Il13rα2(-/-), and iIL-13Tg/Stat6(-/-) mice revealed that IL-13-mediated dysregulation of epithelial architecture and Cl(-) conductance is dependent on IL-13Rα1 and STAT-6. These observations demonstrate a central role for the IL-13/IL-13Rα1 pathway in the regulation of intestinal epithelial cell Cl(-) secretion via up-regulation of cystic fibrosis transmembrane conductance regulator, suggesting an important role for this pathway in secretory diarrhea.  相似文献   
994.
We recently reported a two-hybrid trap for detecting protein-protein interactions in intact mammalian cells (MAPPIT). The bait protein was fused to a STAT recruitment-deficient, homodimeric cytokine receptor and the prey protein to functional STAT recruitment sites. In such a configuration, STAT-dependent responses can be used to monitor a given bait-prey interaction. Using this system, we were able to demonstrate both modification-independent and tyrosine phosphorylation- dependent interactions. Protein modification in this approach is, however, strictly dependent on the receptor-associated JAK tyrosine kinases. We have now extended this concept by using extracellular domains of the heteromeric granulocyte/macrophage colony-stimulating factor receptor (GM-CSFR). Herein, the bait was fused to the (beta)c chain and its modifying enzyme to the GM-CSFRalpha chain (or vice versa). We demonstrate several serine phosphorylation-dependent interactions in the TGFbeta/Smad pathway using the catalytic domains of the ALK4 or ALK6 serine/threonine kinase receptors. In all cases tested, STAT-dependent signaling was completely abolished when mutant baits were used wherein critical serine residues were replaced by alanines. This approach operates both in transient and stable expression systems and may not be limited to serine phosphorylation but has the potential for studying various different types of protein modification-dependent interactions in intact cells.  相似文献   
995.
The opportunistic pathogen Mycobacterium avium is a significant inhabitant of biofilms in drinking water distribution systems. M. avium expresses on its cell surface serovar-specific glycopeptidolipids (ssGPLs). Studies have implicated the core GPL in biofilm formation by M. avium and by other Mycobacterium species. In order to test this hypothesis in a directed fashion, three model systems were used to examine biofilm formation by mutants of M. avium with transposon insertions into pstAB (also known as nrp and mps). pstAB encodes the nonribosomal peptide synthetase that catalyzes the synthesis of the core GPL. The mutants did not adhere to polyvinyl chloride plates; however, they adhered well to plastic and glass chamber slide surfaces, albeit with different morphologies from the parent strain. In a model that quantified surface adherence under recirculating water, wild-type and pstAB mutant cells accumulated on stainless steel surfaces in equal numbers. Unexpectedly, pstAB mutant cells were >10-fold less abundant in the recirculating-water phase than parent strain cells. These observations show that GPLs are directly or indirectly required for colonization of some, but by no means all, surfaces. Under some conditions, GPLs may play an entirely different role by facilitating the survival or dispersal of nonadherent M. avium cells in circulating water. Such a function could contribute to waterborne M. avium infection.  相似文献   
996.
Caffeic acid O-methyltransferase (COMT) is a bifunctional enzyme that methylates the 5- and 3-hydroxyl positions on the aromatic ring of monolignol precursors, with a preference for 5-hydroxyconiferaldehyde, on the way to producing sinapyl alcohol. Lignins in COMT-deficient plants contain benzodioxane substructures due to the incorporation of 5-hydroxyconiferyl alcohol (5-OH-CA), as a monomer, into the lignin polymer. The derivatization followed by reductive cleavage method can be used to detect and determine benzodioxane structures because of their total survival under this degradation method. Moreover, partial sequencing information for 5-OH-CA incorporation into lignin can be derived from detection or isolation and structural analysis of the resulting benzodioxane products. Results from a modified derivatization followed by reductive cleavage analysis of COMT-deficient lignins provide evidence that 5-OH-CA cross couples (at its β-position) with syringyl and guaiacyl units (at their O-4-positions) in the growing lignin polymer and then either coniferyl or sinapyl alcohol, or another 5-hydroxyconiferyl monomer, adds to the resulting 5-hydroxyguaiacyl terminus, producing the benzodioxane. This new terminus may also become etherified by coupling with further monolignols, incorporating the 5-OH-CA integrally into the lignin structure.Lignins are polymeric aromatic constituents of plant cell walls, constituting about 15% to 35% of the dry mass (Freudenberg and Neish, 1968; Adler, 1977). Unlike other natural polymers such as cellulose or proteins, which have labile linkages (glycosides and peptides) between their building units, lignins’ building units are combinatorially linked with strong ether and carbon-carbon bonds (Sarkanen and Ludwig, 1971; Harkin, 1973). It is difficult to completely degrade lignins. Lignins are traditionally considered to be dehydrogenative polymers derived from three monolignols, p-coumaryl alcohol 1h (which is typically minor), coniferyl alcohol 1g, and sinapyl alcohol 1s (Fig. 1; Sarkanen, 1971). They can vary greatly in their composition in terms of their plant and tissue origins (Campbell and Sederoff, 1996). This variability is probably determined and regulated by different activities and substrate specificities of the monolignol biosynthetic enzymes from different sources, and by the carefully controlled supply of monomers to the lignifying zone (Sederoff and Chang, 1991).Open in a separate windowFigure 1.The monolignols 1, and marker compounds 2 to 4 resulting from incorporation of novel monomer 15h into lignins: thioacidolysis monomeric marker 2, dimers 3, and DFRC dimeric markers 4.Recently there has been considerable interest in genetic modification of lignins with the goal of improving the utilization of lignocellulosics in various agricultural and industrial processes (Baucher et al., 2003; Boerjan et al., 2003a, 2003b). Studies on mutant and transgenic plants with altered monolignol biosynthesis have suggested that plants have a high level of metabolic plasticity in the formation of their lignins (Sederoff et al., 1999; Ralph et al., 2004). Lignins in angiosperm plants with depressed caffeic acid O-methyltransferase (COMT) were found to derive from significant amounts of 5-hydroxyconiferyl alcohol (5-OH-CA) monomers 15h (Fig. 1) substituting for the traditional monomer, sinapyl alcohol 1s (Marita et al., 2001; Ralph et al., 2001a, 2001b; Jouanin et al., 2004; Morreel et al., 2004b). NMR analysis of a ligqnin from COMT-deficient poplar (Populus spp.) has revealed that novel benzodioxane structures are formed through β-O-4 coupling of a monolignol with 5-hydroxyguaiacyl units (resulting from coupling of 5-OH-CA), followed by internal trapping of the resultant quinone methide by the phenolic 5-hydroxyl (Ralph et al., 2001a). When the lignin was subjected to thioacidolysis, a novel 5-hydroxyguaiacyl monomer 2 (Fig. 1) was found in addition to the normal guaiacyl and syringyl thioacidolysis monomers (Jouanin et al., 2000). Also, a new compound 3g (Fig. 1) was found in the dimeric products from thioacidolysis followed by Raney nickel desulfurization (Lapierre et al., 2001; Goujon et al., 2003).Further study with the lignin using the derivatization followed by reductive cleavage (DFRC) method also confirmed the existence of benzodioxane structures, with compounds 4 (Fig. 1) being identified following synthesis of the authentic parent compounds 9 (Fig. 2). However, no 5-hydroxyguaiacyl monomer could be detected in the DFRC products. These facts imply that the DFRC method leaves the benzodioxane structures fully intact, suggesting that the method might therefore be useful as an analytical tool for determining benzodioxane structures that are linked by β-O-4 ethers. Using a modified DFRC procedure, we report here on results that provide further evidence for the existence of benzodioxane structures in lignins from COMT-deficient plants, that 5-OH-CA is behaving as a rather ideal monolignol that can be integrated into plant lignins, and demonstrate the usefulness of the DFRC method for determining these benzodioxane structures.Open in a separate windowFigure 2.Synthesis of benzodioxane DFRC products 12 (see later in Fig. 6 for their structures). i, NaH, THF. ii, Pyrrolidine. iii, 1g or 1s, benzene/acetone (4/1, v/v). iv, DIBAL-H, toluene. v, Iodomethane-K2CO3, acetone. vi, Ac2O pyridine.  相似文献   
997.
998.
999.
The concept of benefit sharing pertains to the act of giving something in return to the participants, communities, and the country that have participated in global health research or bioprospecting activities. One of the key concerns of benefit sharing is the ethical justifications or reasons to support the practice of the concept in global health research and bioprospecting. This article evaluates one of such ethical justifications and its meaning to benefit sharing, namely justice. We conducted a systematic review to map the various principles of justice that are linked to benefit sharing and analysed their meaning to the concept of benefit sharing. Five principles of justice (commutative, distributive, global, procedural, and compensatory) have been shown to be relevant in the nuances of benefit sharing in both global health research and bioprospecting. The review findings indicate that each of these principles of justice provides a different perspective for a different benefit sharing rationale. For example, commutative justice provides a benefit sharing rationale that is focused on fair exchange of benefits between research sponsors and communities. Distributive justice produces a benefit sharing rationale that is focused on improving the health needs of the vulnerable research communities. We have suggested that a good benefit sharing framework particularly in global health research would be more beneficial if it combines all the principles of justice in its formulation. Nonetheless, there is a need for empirical studies to examine the various principles of justice and their nuances in benefit sharing among stakeholders in global health research.  相似文献   
1000.
Initiation of protein translation is a well-studied fundamental process, albeit high-throughput and more comprehensive determination of the exact translation initiation sites (TIS) was only recently made possible following the introduction of positional proteomics techniques that target protein N-termini. Precise translation initiation is of crucial importance, as truncated or extended proteins might fold, function, and locate erroneously. Still, as already shown for some proteins, alternative translation initiation can also serve as a regulatory mechanism. By applying N-terminal COFRADIC (combined fractional diagonal chromatography), we here isolated N-terminal peptides of a Saccharomyces cerevisiae proteome and analyzed both annotated and alternative TIS. We analyzed this N-terminome of S. cerevisiae which resulted in the identification of 650 unique N-terminal peptides corresponding to database annotated TIS. Furthermore, 56 unique N(α)-acetylated peptides were identified that suggest alternative TIS (MS/MS-based), while MS-based evidence of N(α)-acetylation led to an additional 33 such peptides. To improve the overall sensitivity of the analysis, we also included the 5' UTR (untranslated region) in-frame translations together with the yeast protein sequences in UniProtKB/Swiss-Prot. To ensure the quality of the individual peptide identifications, peptide-to-spectrum matches were only accepted at a 99% probability threshold and were subsequently analyzed in detail by the Peptizer tool to automatically ascertain their compliance with several expert criteria. Furthermore, we have also identified 60 MS/MS-based and 117 MS-based N(α)-acetylated peptides that point to N(α)-acetylation as a post-translational modification since these peptides did not start nor were preceded (in their corresponding protein sequence) by a methionine residue. Next, we evaluated consensus sequence features of nucleic acids and amino acids across each of these groups of peptides and evaluated the results in the context of publicly available data. Taken together, we present a list of 706 annotated and alternative TIS for yeast proteins and found that under normal growth conditions alternative TIS might (co)occur in S. cerevisiae in roughly one tenth of all proteins. Furthermore, we found that the nucleic acid and amino acid features proximate to these alternative TIS favor either guanine or adenine nucleotides following the start codon or acidic amino acids following the initiator methionine. Finally, we also observed an unexpected high number of N(α)-acetylated peptides that could not be related to TIS and therefore suggest events of post-translational N(α)-acetylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号