首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1030篇
  免费   75篇
  1105篇
  2023年   8篇
  2022年   12篇
  2021年   28篇
  2020年   17篇
  2019年   28篇
  2018年   20篇
  2017年   16篇
  2016年   42篇
  2015年   59篇
  2014年   60篇
  2013年   84篇
  2012年   76篇
  2011年   103篇
  2010年   57篇
  2009年   43篇
  2008年   64篇
  2007年   72篇
  2006年   52篇
  2005年   68篇
  2004年   55篇
  2003年   31篇
  2002年   41篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1957年   1篇
排序方式: 共有1105条查询结果,搜索用时 0 毫秒
91.
Non-invasive wildlife research using DNA from feces has become increasingly popular. Recent studies have attempted to solve problems associated with recovering DNA from feces by investigating the influence of factors such as season, diet, collection method, preservation method, extraction protocol, and time. To our knowledge, studies of this nature have not addressed DNA degradation over time in wet environments, and have not been performed on fecal pellets of ungulates. Therefore, our objective was to determine the length of time a fecal pellet from a Sitka black-tailed deer (Odocoileus hemionus sitkensis) could remain in the field in a temperate rainforest environment before the DNA became too degraded for individual identification. Pellets were extracted from the rectum of recently killed deer and placed in an environment protected from rainfall and in an environment exposed to rainfall. Pellets from each treatment group were sampled at intervals of 2, 7, 14, 21, and 28 days after deer harvest. DNA was extracted from sampled pellets and individual samples were genotyped using microsatellite markers. Amplification failure and errors (dropout and false alleles) were recorded to determine extent of DNA degradation. Eighty percent of samples in the protected environment and 22% of samples in the exposed environment were successfully genotyped during the 28-day experiment. With no samples being successfully genotyped in the exposed environment after 7 days, our study showed that rainfall significantly increases degradation rates of DNA from ungulate pellets.  相似文献   
92.
During dual-phase fermentations using Escherichia coli engineered for succinic acid production, the productivity and viable cell concentration decrease as the concentration of succinic acid increases. The effects of succinic acid on the fermentation kinetics, yield, and cell viability were investigated by resuspending cells in fresh media after selected fermentation times. The cellular succinic acid productivity could be restored, but cell viability continuously decreased throughout the fermentations by up to 80% and subsequently the volumetric productivity was reduced. Omitting complex nutrients in the resuspension media had no significant effect on cellular succinate productivity and yield, although the viable cell concentration and thus the volumetric productivity was reduced by approximately 20%. By resuspending the cells, the amount of succinate produced during a 100-h fermentation was increased by more than 60%. The results demonstrate that by product removal succinic acid productivity can be maintained at high levels for extended periods of time.  相似文献   
93.
Wheat contains three different classes of proteinaceous xylanase inhibitors (XIs), i.e. Triticum aestivum xylanase inhibitors (TAXIs) xylanase‐inhibiting proteins (XIPs), and thaumatin‐like xylanase inhibitors (TLXIs) which are believed to act as a defensive barrier against phytopathogenic attack. In the absence of relevant data in wheat kernels, we here examined the response of the different members of the XI protein population to infection with a ΔTri5 mutant of Fusarium graminearum, the wild type of which is one of the most important wheat ear pathogens, in early developing wheat grain. Wheat ears were inoculated at anthesis, analyzed using 2‐D DIGE and multivariate analysis at 5, 15, and 25 days post anthesis (DPA), and compared with control samples. Distinct abundance patterns could be distinguished for different XI forms in response to infection with F. graminearum ΔTri5. Some (iso)forms were up‐regulated, whereas others were down‐regulated. This pathogen‐specific regulation of proteins was mostly visible at five DPA and levelled off in the samples situated further from the inoculation point. Furthermore, it was shown that most identified TAXI‐ and XIP‐type XI (iso)forms significantly increased in abundance from the milky (15 DPA) to the soft dough stages (25 DPA) on a per kernel basis, although the extent of increase differed greatly. Non‐glycosylated XIP forms increased more strongly than their glycosylated counterparts.  相似文献   
94.
Lignin is a heteropolymer that is thought to form in the cell wall by combinatorial radical coupling of monolignols. Here, we present a simulation model of in vitro lignin polymerization, based on the combinatorial coupling theory, which allows us to predict the reaction conditions controlling the primary structure of lignin polymers. Our model predicts two controlling factors for the β-O-4 content of syringyl-guaiacyl lignins: the supply rate of monolignols and the relative amount of supplied sinapyl alcohol monomers. We have analyzed the in silico degradability of the resulting lignin polymers by cutting the resulting lignin polymers at β-O-4 bonds. These are cleaved in analytical methods used to study lignin composition, namely thioacidolysis and derivatization followed by reductive cleavage, under pulping conditions, and in some lignocellulosic biomass pretreatments.Lignins are aromatic polymers that are predominantly present in secondarily thickened cell walls. These polymers make the cell wall rigid and impervious, allowing transport of water and nutrients through the vascular system and protecting plants against microbial invasion. Lignins are heterogeneous polymers derived from phenylpropanoid monomers, mainly the hydroxycinnamyl alcohols coniferyl alcohol (G-monomer) and sinapyl alcohol (S-monomer) and minor amounts of p-coumaryl alcohol (H-monomer). These monolignols differ in their degree of aromatic methoxylation (-OCH3 group; Fig. 1). The resulting units in the lignin polymer are the guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) units. They are linked by a variety of chemical bonds (Fig. 2) that have different chemical properties (Boerjan et al., 2003; Ralph et al., 2004; Vanholme et al., 2008).Open in a separate windowFigure 1.Chemical structures of three monolignols. A, H-monomer (p-coumaryl alcohol). B, G-monomer (coniferyl alcohol). C, S-monomer (sinapyl alcohol). G- and S-monomers are considered in our simulations. The G-monomer is methoxylated (-OCH3 group) on position 3, and the S-monomer is methoxylated on positions 3 and 5.Open in a separate windowFigure 2.Chemical structures resulting from the possible bonding between two monomers (A) or a monomer and the bindable end of an oligomer (B). X and Y in the monomers denote the absence (for a G-unit) or presence (for an S-unit) of a methoxyl group at position 5 (see Fig. 1). The red line indicates the bonds generated by couplings of the B position and B, 4, or 5 position.Lignification is the process by which monomers and/or oligomers are polymerized via radical coupling reactions and typically occurs after the polysaccharides have been laid down in the cell wall. Lignin composition varies among cell types and can even be different in individual cell wall layers (Ruel et al., 2009). Lignin composition is also influenced by environmental conditions; for example, lignin in compression wood is enriched in H-units (Timell, 1986). Hence, both developmental and environmental parameters influence the composition and thus the structure of the lignin polymer (Boerjan et al., 2003; Ralph et al., 2004).Lignin is one of the main negative factors in the conversion of lignocellulosic plant biomass into pulp and bioethanol (Lynd et al., 1991; Hill et al., 2006). In these processes, lignin needs to be degraded by chemical or mechanical processes that are expensive and often environmentally polluting. Hence, major research efforts are devoted toward understanding lignin biosynthesis and structure. It has already been shown that reducing lignin content and modifying its composition in transgenic plants can result in dramatic improvements in pulping efficiency (Pilate et al., 2002; Baucher et al., 2003; Huntley et al., 2003; Leplé et al., 2007) and in the conversion of biomass into bioethanol (Stewart et al., 2006; Chen and Dixon, 2007; Custers, 2009). These altered biomass properties are related to the alterations in lignin composition and structure in terms of the frequencies of the lignin units and the bond types connecting them and possibly also their interaction with hemicelluloses (Ralph et al., 2004; Ralph, 2006).To study the parameters that influence lignin structure, lignin polymerization has been mimicked in vitro by experiments with dehydrogenation polymers (DHPs; Terashima et al., 1995). Indeed, lignification can be mimicked by oxidizing monolignols using a peroxidase, such as horseradish peroxidase (HRP), and supplying its cofactor hydrogen peroxide, producing synthetic DHP lignins. Monolignol oxidation can also be achieved without enzymes (e.g. by using transition metal one-electron oxidants, such as copper acetate). Some of these biomimetic DHPs have been suggested to be better models for wood lignins than HRP-generated DHPs (Landucci, 2000).In DHP experiments, the monolignols are either added in bulk (Zulauf experiment) or dropwise (Zutropf experiment) to the reaction mixture, yielding lignin polymers with very different bond frequencies (Freudenberg, 1956). Zutropf experiments approach the in vivo formation of lignin, which depends on the slow introduction of monolignols into the wall matrix via diffusion to the site of incorporation (Hatfield and Vermerris, 2001). Because the exact reaction conditions are known, such in vitro experiments have provided insight into the lignification process in planta. In this way, numerous factors were shown to influence lignin structure, including the relative supply of the monolignols, the pH, the presence of polysaccharides, hydrogen peroxide concentrations, and cell wall matrix elements in general (Grabber et al., 2003; Vanholme et al., 2008).Computer simulations of lignin polymerization can help explain and predict lignin structure from low-level chemical kinetic factors, including subunit-coupling probabilities and monolignol synthesis rates. Such models are helpful in explaining the mechanism behind a range of controlling factors identified in the experimental work, including (1) the ratio of coniferyl versus sinapyl alcohol monolignols, (2) the monolignol supply rate, and (3) the abundance of alternative monomers present during lignin biosynthesis in mutants and transgenics. Thus, computer models will also help in suggesting new targets for controlled lignin biosynthesis.Here, we propose a simulation model of synthetic lignin polymerization that is based upon an emerging consensus from a variety of observations and derives from a series of previous models of lignin polymerization (Glasser and Glasser, 1974; Glasser et al., 1976; Jurasek, 1995; Roussel and Lim, 1995). Our model uses a symbolic grammar to describe a constructive dynamical system (Fontana, 1992) or a rule-based system (Feret et al., 2009) in which it is not necessary to define all possible products in advance. We assume that G- and S-monomers and newly formed oligomers couple in a well-mixed medium, depending on coupling rules and experimentally measured coupling probabilities. To develop the model, we have used information from DHP experiments rather than natural lignins, as they are formed in a well-mixed medium and their reaction conditions are well known (e.g. the influx rate of monomers). Using information from natural lignin would have further complicated our model, as the structures of natural lignin polymers are influenced by many factors, including the possible involvement of dirigent proteins (Davin and Lewis, 2005), steric hindrance by polysaccharides, spatiotemporal regulation, and modifications during isolation procedures (Boerjan et al., 2003; Ralph et al., 2004).Using our simulation models, we study how putative controlling factors of lignin primary structure, including the influx rate of monomers and the relative amount of S-monomers, affect in silico lignin synthesis, and we compare our predictions with in vitro experiments. To predict the degradability of lignins formed in our simulations, we apply an in silico thioacidolysis, which cleaves the polymers at their β-O-4 positions. This simulates the molecular action of two of the most used methods to analyze lignin composition, thioacidolysis (Lapierre, 1993; Baucher et al., 2003) and derivatization followed by reductive cleavage (Lu and Ralph, 1997). The G+S-monomer yield is often taken as a reflection of the fraction of units bound by β-O-4 bonds. Cleavage of β-O-4 bonds is also the most important reaction in kraft pulping of wood (Baucher et al., 2003). The model predicts from first principles (1) that DHP lignins formed under Zutropf conditions have a higher β-O-4 content than those formed under Zulauf conditions, (2) that DHP lignins formed with high S content have a higher β-O-4 content than those formed with high G content, and (3) that a higher β-O-4 content does not necessarily reduce the average length of lignin fragments generated during in silico thioacidolysis.  相似文献   
95.
Applied Microbiology and Biotechnology - Glycolic acid (GA) is an ⍺-hydroxy acid used in cosmetics, packaging, and medical industries due to its excellent properties, especially in its...  相似文献   
96.
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus’ growth, highlighting species‐specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus’ growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.  相似文献   
97.
The differential ability of forest herbs to colonize secondary forests on former agricultural land is generally attributed to different rates of dispersal. After propagule arrival, however, establishing individuals still have to cope with abiotic soil legacies from former agricultural land use. We focused on the plastic responses of forest herbs to increased phosphorus availability, as phosphorus is commonly found to be persistently bioavailable in post-agricultural forest soils. In a pot experiment performed under field conditions, we applied three P levels to four forest herbs with contrasting colonization capacities: Anemone nemorosa, Primula elatior, Circaea lutetiana and Geum urbanum. To test interactions with light availability, half of the replicas were covered with shade cloths. After two growing seasons, we measured aboveground P uptake as well as vegetative and regenerative performance. We hypothesized that fast-colonizing species respond the most opportunistically to increased P availability, and that a low light availability can mask the effects of P on performance. All species showed a significant increase in P uptake in the aboveground biomass. The addition of P had a positive effect on the vegetative performances of two of the species, although this was unrelated to their colonization capacities. The regenerative performance was affected by light availability (not by P addition) and was related to the species’ phenology. Forest herbs can obviously benefit from the increased availability of P in post-agricultural forests, but not all species respond in the same way. Such differential patterns of plasticity may be important in community dynamics, as they affect the interactions among species.  相似文献   
98.
99.

Objective

The aim of the present study is to determine if CEACAM6 can be detected in the bile of patients with biliary cancer and can serve as a diagnostic biomarker for cholangiocarcinoma.

Summary Background Data

Distinguishing bile duct carcinoma from other diagnoses is often difficult using endoscopic or percutaneous techniques. The cell surface protein CEACAM6 is over-expressed in many gastrointestinal cancers and may be selectively elevated in biliary adenocarcinoma.

Methods

Bile from patients with benign biliary disease and cholangiocarcinoma (hilar, intrahepatic and distal) was collected at the time of index operation. The concentration of CEACAM6 was quantified by sandwich enzyme-linked immunosorbent assay (ELISA) and correlated to pathologic diagnosis. Diagnostic capability of CEACAM6 was evaluated by Wilcoxon rank-sum, linear regression, multiple regression, and receiver operating characteristic (ROC) curve analysis.

Results

Bile from 83 patients was analyzed: 42 with benign disease and 41 with cholangiocarcinoma. Patients in the benign cohort were younger, predominantly female, and had lower median biliary CEACAM6 levels than patients in the malignant cohort (7.5 ng/ml vs. 40 ng/ml; p = <.001). ROC curve analysis determined CEACAM6 to be a positive predictor cholangiocarcinoma with a CEACAM6 level >14 ng/ml associated with 87.5% sensitivity, 69.1% specificity, and a likelihood ratio of 2.8 (AUC 0.74). Multiple regression analysis suggested elevated alkaline phosphatase and the presence of biliary endoprostheses may influence CEACAM6 levels.

Conclusion

Biliary CEACAM6 can identify patients with extrahepatic cholangiocarcinoma with a high degree of sensitivity and should be investigated further as a potential screening tool.  相似文献   
100.
Mass spectrometry-driven proteomics is increasingly relying on quantitative analyses for biological discoveries. As a result, different methods and algorithms have been developed to perform relative or absolute quantification based on mass spectrometry data. One of the most popular quantification methods are the so-called label-free approaches, which require no special sample processing, and can even be applied retroactively to existing data sets. Of these label-free methods, the MS/MS-based approaches are most often applied, mainly because of their inherent simplicity as compared to MS-based methods. The main application of these approaches is the determination of relative protein amounts between different samples, expressed as protein ratios. However, as we demonstrate here, there are some issues with the reproducibility across replicates of these protein ratio sets obtained from the various MS/MS-based label-free methods, indicating that the existing methods are not optimally robust. We therefore present two new methods (called RIBAR and xRIBAR) that use the available MS/MS data more effectively, achieving increased robustness. Both the accuracy and the precision of our novel methods are analyzed and compared to the existing methods to illustrate the increased robustness of our new methods over existing ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号