首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23399篇
  免费   1552篇
  国内免费   3篇
  24954篇
  2024年   6篇
  2023年   169篇
  2022年   328篇
  2021年   659篇
  2020年   424篇
  2019年   496篇
  2018年   722篇
  2017年   618篇
  2016年   933篇
  2015年   1391篇
  2014年   1523篇
  2013年   1902篇
  2012年   2218篇
  2011年   2074篇
  2010年   1280篇
  2009年   1098篇
  2008年   1397篇
  2007年   1310篇
  2006年   1260篇
  2005年   1050篇
  2004年   961篇
  2003年   877篇
  2002年   780篇
  2001年   154篇
  2000年   118篇
  1999年   144篇
  1998年   181篇
  1997年   142篇
  1996年   111篇
  1995年   83篇
  1994年   91篇
  1993年   65篇
  1992年   58篇
  1991年   39篇
  1990年   37篇
  1989年   33篇
  1988年   24篇
  1987年   20篇
  1986年   10篇
  1985年   18篇
  1984年   21篇
  1983年   20篇
  1982年   13篇
  1981年   18篇
  1980年   16篇
  1979年   12篇
  1978年   7篇
  1977年   11篇
  1975年   6篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
41.
Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation.  相似文献   
42.
Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications.  相似文献   
43.
Despite important advances from Genome Wide Association Studies (GWAS), for most complex human traits and diseases, a sizable proportion of genetic variance remains unexplained and prediction accuracy (PA) is usually low. Evidence suggests that PA can be improved using Whole-Genome Regression (WGR) models where phenotypes are regressed on hundreds of thousands of variants simultaneously. The Genomic Best Linear Unbiased Prediction (G-BLUP, a ridge-regression type method) is a commonly used WGR method and has shown good predictive performance when applied to plant and animal breeding populations. However, breeding and human populations differ greatly in a number of factors that can affect the predictive performance of G-BLUP. Using theory, simulations, and real data analysis, we study the performance of G-BLUP when applied to data from related and unrelated human subjects. Under perfect linkage disequilibrium (LD) between markers and QTL, the prediction R-squared (R2) of G-BLUP reaches trait-heritability, asymptotically. However, under imperfect LD between markers and QTL, prediction R2 based on G-BLUP has a much lower upper bound. We show that the minimum decrease in prediction accuracy caused by imperfect LD between markers and QTL is given by (1−b)2, where b is the regression of marker-derived genomic relationships on those realized at causal loci. For pairs of related individuals, due to within-family disequilibrium, the patterns of realized genomic similarity are similar across the genome; therefore b is close to one inducing small decrease in R2. However, with distantly related individuals b reaches very low values imposing a very low upper bound on prediction R2. Our simulations suggest that for the analysis of data from unrelated individuals, the asymptotic upper bound on R2 may be of the order of 20% of the trait heritability. We show how PA can be enhanced with use of variable selection or differential shrinkage of estimates of marker effects.  相似文献   
44.
45.
46.
Previous studies have demonstrated that keratin K10 plays an important role in mediating cell signaling processes, since the ectopic expression of this keratin induces cell cycle arrest in proliferating cells in vitro and in vivo. However, apart from its well known function of providing epithelial cells with resilience to mechanical trauma, little is known about its possible roles in nondividing cells. To investigate what these might be, transgenic mice were generated in which the expression of K10 was driven by bovine K6beta gene control elements (bK6(beta)hK10). The transgenic mice displayed severe abnormalities in the tongue and palate but not in other K6-expressing cells such as those of the esophagus, nails, and hair follicles. The lesions in the tongue and palate included the cytolysis of epithelial suprabasal cells associated with an acute inflammatory response and lymphocyte infiltration. The alterations in the oral mucosa caused the death of transgenic pups soon after birth, probably because suckling was impaired. These anomalies, together with others found in the teeth, are reminiscent of the lesions observed in some patients with pachyonychia congenita, an inherited epithelial fragility associated with mutations in keratins K6 and K16. Although no epithelial fragility was observed in the bK6(beta)hK10 oral epithelia of the experimental mice, necrotic processes were seen. Collectively, these data show that the carefully regulated tissue- and differentiation-specific patterns displayed by the keratin genes have dramatic consequences on the biological behavior of epithelial cells and that changes in the specific composition of the keratin intermediate filament cytoskeleton can affect their physiology, in particular those of the oral mucosa.  相似文献   
47.
Leaf senescence is the orderly dismantling of older tissue that allows recycling of nutrients to developing portions of the plant and is accompanied by major changes in gene expression. Histone modifications correlate to levels of gene expression, and this study utilizes ChIP-seq to classify activating H3K4me3 and silencing H3K27me3 marks on a genome-wide scale for soil-grown mature and naturally senescent Arabidopsis leaves. ChIPnorm was used to normalize data sets and identify genomic regions with significant differences in the two histone methylation patterns, and the differences were correlated to changes in gene expression. Genes that showed an increase in the H3K4me3 mark in older leaves were senescence up-regulated, while genes that showed a decrease in the H3K4me3 mark in the older leaves were senescence down-regulated. For the H3K27me3 modification, genes that lost the H3K27me3 mark in older tissue were senescence up-regulated. Only a small number of genes gained the H3K27me3 mark, and these were senescence down-regulated. Approximately 50% of senescence up-regulated genes lacked the H3K4me3 mark in both mature and senescent leaf tissue. Two of these genes, SAG12 and At1g73220, display strong senescence up-regulation without the activating H3K4me3 histone modification. This study provides an initial epigenetic framework for the developmental transition into senescence.  相似文献   
48.
The ability of Pleurotus ostreatus biomass, cultived by submerged fermentation, to produce beneficial effect on lipid profile and macrophages activity during a high-fat diet (HFD) for a long-term intake was investigated. Blood samples were collected through cardiac puncture to measure the plasma cholesterol, triglycerides, low-density protein (LDL), high-density protein (HDL), aspartate aminotransferase (AST) activity, urea-blood urea nitrogen (BUN)/creatinine ratio of rats fed on an HFD for 4 months. Dosage of lipid hydroperoxides was carried out on methanolic extract of liver tissue. Peritoneal macrophages activity was evaluated in relation to the superoxide anion, hydrogen peroxide and nitric oxide production, phagocytosis and lysosomal volume. The administration of P. ostreatus significantly altered the lipid profile and oxidative stress as related to the LDL and triglycerides decrease and inhibitory effects on superoxide anion and hydrogen peroxide production. All findings of this study lead us to suggest that the P. ostreatus maybe a beneficial agent in the hyperlipidemia and atherosclerosis treatments.  相似文献   
49.
50.

Background

The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.

Methodology/Principal Findings

We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepitelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.

Conclusion/Significance

Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号