首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   37篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2020年   11篇
  2019年   11篇
  2018年   6篇
  2017年   11篇
  2016年   7篇
  2015年   15篇
  2014年   14篇
  2013年   16篇
  2012年   14篇
  2011年   22篇
  2010年   17篇
  2009年   12篇
  2008年   16篇
  2007年   14篇
  2006年   14篇
  2005年   16篇
  2004年   11篇
  2003年   3篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1983年   3篇
  1978年   3篇
  1974年   3篇
  1972年   1篇
  1969年   1篇
排序方式: 共有306条查询结果,搜索用时 15 毫秒
41.
We studied whether regulated exocytosis affects the glutamate transporter density in cultured astrocytes, in which the expression of a fluorescently labeled excitatory amino acid transporter 2 (EAAT2-EGFP) predominantly labeled the plasma membrane. The addition of ionomycin that elevates cytosolic Ca(2+) strongly increased the fluorescence of FM 4-64 membrane area dye, confirming the presence of regulated exocytosis in transfected astrocytes. However, concomitant with Ca(2+)-dependent FM 4-64 fluorescence increase, ionomycin induced a significant steady-state decrease in EAAT2-EGFP fluorescence. This is likely due to a secondary inner filter effect since,(i) in the absence of FM 4-64, ionomycin stimulation was ineffective in changing the EAAT2-EGFP fluorescence, and (ii) fluorescence changes in FM 4-64 and EAAT2-EGFP were inversely correlated. To test whether subcellular EAAT2-EGFP structures are translocated from the cytoplasm to the plasma membrane during ionomycin stimulation, EAAT2-EGFP fluorescence was monitored locally at the plasma membrane and a few microns away in the adjacent cytoplasm. Measurements revealed sites with an increase in EAAT2-EGFP plasma membrane fluorescence correlated with a fluorescence decrease beneath the plasma membrane, and sites with plasma membrane fluorescence decrease correlated with fluorescence increase within the adjacent cytoplasm. The sites of rapid translocation/retrieval of EAAT2-EGFP structures to/from the plasma membrane appeared to be distributed in a punctuate pattern around the cell perimeter. The density of EAAT2-EGFP was regulated in a Ca(2+)-dependent manner, since in the absence of extracellular Ca(2+) local translocation/retrieval events were absent, revealing rapid surface density regulation of EAAT2 in astrocytes by regulated exo/endocytosis.  相似文献   
42.
Thiol:disulfide redox metabolism (TDRM) is a central metabolic network in all living cells. However, numerous proteins with different biochemical functions and several structural domains are involved, making it not trivial to identify and annotate its constituents in sequenced genomes. We developed an uncomplicated approach to solve the problem using existing web-based tools and public databases with the gram-positive bacterium Listeria monocytogenes EGD-e as a model organism. A pattern search for the Cys-Xaa-Xaa-Cys (CXXC) motif - a hallmark of TDRM proteins - in the genome sequence of the bacterium yielded 156 proteins. After initial refinement by protein and domain analysis, 14 candidate proteins remained. Subsequent detailed analyses, supported by modeling of 3D structures and data integration yielded 6 thioredoxin-like proteins plus thioredoxin reductase, glutaredoxin, one redox-sensitive regulator, one peptide methionine reductase - all typical TDRM constituents - and three putative novel components of the TDRM. For all 14 proteins orthologues were found in other Listeria species. Homology searches and phylogenetic analyses showed that related proteins are present mainly in other Firmicutes. This fast approach required minimal resources. It is immediately applicable to any genome with appropriate modifications and should be practicable also for other conserved, functionally important amino acid motifs.  相似文献   
43.
44.
Quality control machinery in the endoplasmic reticulum (ER) helps ensure that only properly folded and assembled proteins accumulate in the ER or continue along the secretory pathway. Aberrant proteins are retrotranslocated to the cytosol and degraded by the proteasome, a process called ER-associated degradation. Doa10, a transmembrane protein of the ER/nuclear envelope, is one of the primary ubiquitin ligases (E3s) participating in ER-associated degradation in Saccharomyces cerevisiae. Here we report the membrane organization of the 1319-residue Doa10 polypeptide. The topology was determined by fusing a dual-topology reporter after 16 different Doa10 fragments. Our results indicate that Doa10 contains 14 transmembrane helices (TMs). Based on protease digestion of yeast microsomes, both the N-terminal RING-CH domain and the C terminus face the cytosol. Notably, the experimentally derived topology was not predicted correctly by any of the generally available TM prediction algorithms. Bioinformatic analysis and in silico mutagenesis guided the topological studies through problematic regions. The conserved TD domain in Doa10 includes three TMs. These TMs might function in cofactor binding or substrate recognition, or they might be part of a retrotranslocation channel. The Derlins were previously proposed to provide such channels, but we show that the two yeast Derlins are not required for degradation of Doa10 membrane substrates, as was found before for the Sec61 translocon. Finally, we provide evidence that the likely human Doa10 ortholog, TEB4 (MARCH-VI), adopts a topology similar to that of Doa10.  相似文献   
45.
Histone H2B ubiquitination is a dynamic modification that promotes methylation of histone H3K79 and H3K4. This crosstalk is important for the DNA damage response and has been implicated in cancer. Here, we show that in engineered yeast strains, ubiquitins tethered to every nucleosome promote H3K79 and H3K4 methylation from a proximal as well as a more distal site, but only if in a correct orientation. This plasticity indicates that the exact location of the attachment site, the native ubiquitin-lysine linkage and ubiquitination cycles are not critical for trans-histone crosstalk in vivo. The flexibility in crosstalk also indicates that other ubiquitination events may promote H3 methylation.  相似文献   
46.
47.
Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.  相似文献   
48.
Digital point‐occurrence records from the Global Biodiversity Information Facility (GBIF) and other data providers enable a wide range of research in macroecology and biogeography. However, data errors may hamper immediate use. Manual data cleaning is time‐consuming and often unfeasible, given that the databases may contain thousands or millions of records. Automated data cleaning pipelines are therefore of high importance. Taking North American Ephedra as a model, we examined how different data cleaning pipelines (using, e.g., the GBIF web application, and four different R packages) affect downstream species distribution models (SDMs). We also assessed how data differed from expert data. From 13,889 North American Ephedra observations in GBIF, the pipelines removed 31.7% to 62.7% false positives, invalid coordinates, and duplicates, leading to datasets between 9484 (GBIF application) and 5196 records (manual‐guided filtering). The expert data consisted of 704 records, comparable to data from field studies. Although differences in the absolute numbers of records were relatively large, species richness models based on stacked SDMs (S‐SDM) from pipeline and expert data were strongly correlated (mean Pearson''s r across the pipelines: .9986, vs. the expert data: .9173). Our results suggest that all R package‐based pipelines reliably identified invalid coordinates. In contrast, the GBIF‐filtered data still contained both spatial and taxonomic errors. Major drawbacks emerge from the fact that no pipeline fully discovered misidentified specimens without the assistance of taxonomic expert knowledge. We conclude that application‐filtered GBIF data will still need additional review to achieve higher spatial data quality. Achieving high‐quality taxonomic data will require extra effort, probably by thoroughly analyzing the data for misidentified taxa, supported by experts.  相似文献   
49.
In the present study, we have evaluated the effects of increased UV-B radiation that simulates 17% ozone depletion, on fungal colonisation and concentrations of rutin, catechin and quercetin in common buckwheat (Fagopyrum esculentum) and tartary buckwheat (Fagopyrum tataricum). Induced root growth and reduced shoot:root ratios were seen in both of these buckwheat species after enhanced UV-B radiation. There was specific induction of shoot quercetin concentrations in UV-B-treated common buckwheat, whereas there were no specific responses for flavonoid metabolism in tartary buckwheat. Root colonisation with arbuscular mycorrhizal fungi significantly reduced catechin concentrations in common buckwheat roots, and induced rutin concentrations in tartary buckwheat, but did not affect shoot concentrations of the measured phenolics. Specific UV-B-related reductions in the density of microsclerotia were observed in tartary buckwheat, indicating a mechanism that potentially affects fungus-plant interactions. The data support the hypothesis that responses to enhanced UV-B radiation can be influenced by the plant pre-adaptation properties and related changes in flavonoid metabolism.  相似文献   
50.
Type 1 and F1C fimbriae are surface organelles of Escherichia coli which mediate receptor-specific binding to different host surfaces. Such fimbriae are found on strains associated with urinary tract infections. The specific receptor binding of the fimbriae is due to the presence of receptor recognition proteins present in the organelles as minor structural elements. The organization of the fim and foc gene clusters encoding these fimbriae, as well as the structures of the organelles, are very similar, although the actual sequence homology of the structural elements is not remarkable; notably, the sequence identity between the minor components of the type 1 and F1C fimbriae is only 34 to 41%. Type 1 fimbriae mediate agglutination of guinea pig erythrocytes, whereas F1C fimbriae do not confer agglutination of any types of erythrocytes tested. However, F1C fimbriae mediate specific adhesion to epithelial cells in the collecting ducts of the human kidney as well as to cells of various cell lines. This report addresses the question of fimbrial promiscuity. Our data indicate that minor fimbrial structural elements can be exchanged between the two fimbrial systems, resulting in hybrid organelles with changed receptor specificity. This is the first study on reciprocal exchange of structural components from two different fimbrial systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号