首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   134篇
  995篇
  2021年   8篇
  2017年   9篇
  2016年   13篇
  2015年   22篇
  2014年   24篇
  2013年   24篇
  2012年   37篇
  2011年   33篇
  2010年   20篇
  2009年   23篇
  2008年   19篇
  2007年   31篇
  2006年   36篇
  2005年   34篇
  2004年   41篇
  2003年   24篇
  2002年   19篇
  2001年   34篇
  2000年   25篇
  1999年   38篇
  1998年   14篇
  1997年   9篇
  1994年   9篇
  1993年   8篇
  1992年   13篇
  1991年   17篇
  1990年   18篇
  1989年   17篇
  1988年   16篇
  1987年   25篇
  1986年   13篇
  1984年   13篇
  1983年   9篇
  1982年   12篇
  1981年   7篇
  1980年   13篇
  1979年   18篇
  1978年   9篇
  1977年   12篇
  1976年   9篇
  1975年   8篇
  1974年   9篇
  1973年   12篇
  1972年   11篇
  1971年   13篇
  1970年   15篇
  1969年   13篇
  1968年   8篇
  1967年   14篇
  1966年   8篇
排序方式: 共有995条查询结果,搜索用时 0 毫秒
91.
92.
In glycogen storage disease type 1 (GSD1), children present with severe hypoglycemia, whereas the propensity for hypoglycemia may decrease with age in these patients. It was the aim of this study to elucidate the mechanisms for milder hypoglycemia symptoms in young adult GSD1 patients. Four patients with GSD1 [body mass index (BMI) 23.2 +/- 6.3 kg/m, age 21.3 +/- 2.9 yr] and four healthy controls matched for BMI (23.1 +/- 3.0 kg/m) and age (24.0 +/- 3.1 yr) were studied. Combined (1)H/(31)P nuclear magnetic resonance spectroscopy (NMRS) was used to assess brain metabolism. Before and after administration of 1 mg glucagon, endogenous glucose production (EGP) was measured with d-[6,6-(2)H(2)]glucose and hepatic glucose metabolism was examined by (1)H/(13)C/(31)P NMRS. At baseline, GSD1 patients exhibited significantly lower rates of EGP (0.53 +/- 0.04 vs. 1.74 +/- 0.03 mg.kg(-1).min(-1); P < 0.01) but an increased intrahepatic glycogen (502 +/- 89 vs. 236 +/- 11 mmol/l; P = 0.05) and lipid content (16.3 +/- 1.1 vs. 1.4 +/- 0.4%; P < 0.001). After glucagon challenge, EGP did not change in GSD1 patients (0.53 +/- 0.04 vs. 0.59 +/- 0.24 mg.kg(-1).min(-1); P = not significant) but increased in healthy controls (1.74 +/- 0.03 vs. 3.95 +/- 1.34; P < 0.0001). In GSD1 patients, we found an exaggerated increase of intrahepatic phosphomonoesters (0.23 +/- 0.08 vs. 0.86 +/- 0.19 arbitrary units; P < 0.001), whereas inorganic phosphate decreased (0.36 +/- 0.08 vs. -0.43 +/- 0.17 arbitrary units; P < 0.01). Intracerebral ratios of glucose and lactate to creatine were higher in GSD1 patients (P < 0.05 vs. control). Therefore, hepatic defects of glucose metabolism persist in young adult GSD1 patients. Upregulation of the glucose and lactate transport at the blood-brain barrier could be responsible for the amelioration of hypoglycemic symptoms.  相似文献   
93.
94.
95.
In 2050, which aspects of ecosystem change will we regret not having measured? Long‐term monitoring plays a crucial part in managing Australia's natural environment because time is a key factor underpinning changes in ecosystems. It is critical to start measuring key attributes of ecosystems – and the human and natural process affecting them – now, so that we can track the trajectory of change over time. This will facilitate informed choices about how to manage ecological changes (including interventions where they are required) and promote better understanding by 2050 of how particular ecosystems have been shaped over time. There will be considerable value in building on existing long‐term monitoring programmes because this can add significantly to the temporal depth of information. The economic and social processes driving change in ecosystems are not identical in all ecosystems, so much of what is monitored (and the means by which it is monitored) will most likely target specific ecosystems or groups of ecosystems. To best understand the effects of ecosystem‐specific threats and drivers, monitoring also will need to address the economic and social factors underpinning ecosystem‐specific change. Therefore, robust assessments of the state of Australia's environment will be best achieved by reporting on the ecological performance of a representative sample of ecosystems over time. Political, policy and financial support to implement appropriate ecosystem‐specific monitoring is a perennial problem. We suggest that the value of ecological monitoring will be demonstrable, when plot‐based monitoring data make a unique and crucial contribution to Australia's ability to produce environmental accounts, environmental reports (e.g. the State of the Environment, State of the Forests) and to fulfilling reporting obligations under international agreements, such as the Convention on Biological Diversity. This paper suggests what must be done to meet Australia's ecological information needs by 2050.  相似文献   
96.
Enzymes that activate dioxygen at carboxylate-bridged non-heme diiron clusters residing within ferritin-like, four-helix-bundle protein architectures have crucial roles in, among other processes, the global carbon cycle (e.g. soluble methane monooxygenase), fatty acid biosynthesis [plant fatty acyl-acyl carrier protein (ACP) desaturases], DNA biosynthesis [the R2 or β2 subunits of class Ia ribonucleotide reductases (RNRs)], and cellular iron trafficking (ferritins). Classic studies on class Ia RNRs showed long ago how this obligatorily oxidative di-iron/O2 chemistry can be used to activate an enzyme for even a reduction reaction, and more recent investigations of class Ib and Ic RNRs, coupled with earlier studies on dimanganese catalases, have shown that members of this protein family can also incorporate either one or two Mn ions and use them in place of iron for redox catalysis. These two strategies--oxidative activation for non-oxidative reactions and use of alternative metal ions--expand the catalytic repertoire of the family, probably to include activities that remain to be discovered. Indeed, a recent study has suggested that fatty aldehyde decarbonylases (ADs) from cyanobacteria, purported to catalyze a redox-neutral cleavage of a Cn aldehyde to the Cn-1 alkane (or alkene) and CO, also belong to this enzyme family and are most similar in structure to two other members with heterodinuclear (Mn-Fe) cofactors. Here, we first briefly review both the chemical principles underlying the O2-dependent oxidative chemistry of the 'classical' di-iron-carboxylate proteins and the two aforementioned strategies that have expanded their functional range, and then consider what metal ion(s) and what chemical mechanism(s) might be employed by the newly discovered cyanobacterial ADs.  相似文献   
97.
Prenatal environmental events that disturb neurodevelopment are suspected to increase the risk of psychiatric disorders. Estrogenic hormones such as diethylstilbestrol (DES) and environmental monomers like Bisphenol A (BPA) have the potential to disturb the development of the foetus and especially its brain. We reviewed the epidemiological studies investigating a possible association between prenatal DES or BPA exposure and risk of psychiatric disorders and discussed the hypothetical biological mechanisms linking this prenatal exposure with psychiatric disorders. The principal methodological issues that could represent confounding factors and may explain conflicting results are discussed. Interestingly, prenatal exposure to DES and BPA has been linked to epigenetic alterations associated with urogenital lesions observed in the exposed offspring, supporting the hypothesis that this environmental factor can indeed alter epigenetic regulations. Following the same line of thinking, these endocrine disruptors may modify the epigenetic mechanisms involved in neurodevelopment and, in turn, increase the occurrence of psychiatric disorders.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号