首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5178篇
  免费   434篇
  国内免费   3篇
  2023年   32篇
  2022年   84篇
  2021年   136篇
  2020年   72篇
  2019年   102篇
  2018年   101篇
  2017年   100篇
  2016年   178篇
  2015年   293篇
  2014年   317篇
  2013年   399篇
  2012年   468篇
  2011年   480篇
  2010年   281篇
  2009年   269篇
  2008年   373篇
  2007年   339篇
  2006年   329篇
  2005年   289篇
  2004年   246篇
  2003年   225篇
  2002年   186篇
  2001年   27篇
  2000年   19篇
  1999年   31篇
  1998年   34篇
  1997年   26篇
  1996年   29篇
  1995年   11篇
  1994年   6篇
  1993年   11篇
  1992年   6篇
  1991年   14篇
  1990年   13篇
  1989年   8篇
  1988年   11篇
  1987年   5篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1974年   3篇
  1973年   3篇
  1969年   4篇
排序方式: 共有5615条查询结果,搜索用时 31 毫秒
991.
Myelodysplastic syndromes (MDS) are characterized by abnormal and dysplastic maturation of all blood lineages. Even though epigenetic alterations have been seen in MDS marrow progenitors, very little is known about the molecular alterations in dysplastic peripheral blood cells. We analyzed the methylome of MDS leukocytes by the HELP assay and determined that it was globally distinct from age-matched controls and was characterized by numerous novel, aberrant hypermethylated marks that were located mainly outside of CpG islands and preferentially affected GTPase regulators and other cancer-related pathways. Additionally, array comparative genomic hybridization revealed that novel as well as previously characterized deletions and amplifications could also be visualized in peripheral blood leukocytes, thus potentially reducing the need for bone marrow samples for future studies. Using integrative analysis, potentially pathogenic genes silenced by genetic deletions and aberrant hypermethylation in different patients were identified. DOCK4, a GTPase regulator located in the commonly deleted 7q31 region, was identified by this unbiased approach. Significant hypermethylation and reduced expression of DOCK4 in MDS bone marrow stem cells was observed in two large independent datasets, providing further validation of our findings. Finally, DOCK4 knockdown in primary marrow CD34(+) stem cells led to decreased erythroid colony formation and increased apoptosis, thus recapitulating the bone marrow failure seen in MDS. These findings reveal widespread novel epigenetic alterations in myelodysplastic leukocytes and implicate DOCK4 as a pathogenic gene located on the 7q chromosomal region.  相似文献   
992.
In the Saccharomyces cerevisiae actin-profilin interface, Ala(167) of the actin barbed end W-loop and His(372) near the C terminus form a clamp around a profilin segment containing residue Arg(81) and Tyr(79). Modeling suggests that altering steric packing in this interface regulates actin activity. An actin A167E mutation could increase interface crowding and alter actin regulation, and A167E does cause growth defects and mitochondrial dysfunction. We assessed whether a profilin Y79S mutation with its decreased mass could compensate for actin A167E crowding and rescue the mutant phenotype. Y79S profilin alone caused no growth defect in WT actin cells under standard conditions in rich medium and rescued the mitochondrial phenotype resulting from both the A167E and H372R actin mutations in vivo consistent with our model. Rescue did not result from effects of profilin on actin nucleotide exchange or direct effects of profilin on actin polymerization. Polymerization of A167E actin was less stimulated by formin Bni1 FH1-FH2 fragment than was WT actin. Addition of WT profilin to mixtures of A167E actin and formin fragment significantly altered polymerization kinetics from hyperbolic to a decidedly more sigmoidal behavior. Substitution of Y79S profilin in this system produced A167E behavior nearly identical to that of WT actin. A167E actin caused more dynamic actin cable behavior in vivo than observed with WT actin. Introduction of Y79S restored cable movement to a more normal phenotype. Our studies implicate the importance of the actin-profilin interface for formin-dependent actin and point to the involvement of formin and profilin in the maintenance of mitochondrial integrity and function.  相似文献   
993.
994.
995.
Mycobacterium tuberculosis is a leading cause of infectious disease in the world today. This outlook is aggravated by a growing number of M. tuberculosis infections in individuals who are immunocompromised as a result of HIV infections. Thus, new and more potent anti-TB agents are necessary. Therefore, dUTpase was selected as a target enzyme to combat M. tuberculosis. In this work, molecular modeling methods involving docking and QM/MM calculations were carried out to investigate the binding orientation and predict binding affinities of some potential dUTpase inhibitors. Our results suggest that the best potential inhibitor investigated, among the compounds studied in this work, is the compound dUPNPP. Regarding the reaction mechanism, we concluded that the decisive stage for the reaction is the stage 1. Furthermore, it was also observed that the compounds with a -1 electrostatic charge presented lower activation energy in relation to the compounds with a -2 charge.  相似文献   
996.
Cellular organization of the cytoskeleton, assembly of intracellular signaling complexes and movement of membrane receptors into supramolecular activation complexes (SMACs) are crucial prerequisites for lymphocyte activation and function. Full T-cell activation requires costimulatory signals in addition to antigen-mediated signals. Costimulatory signals facilitate T-cell activation by inducing SMAC formation, resulting in sustained signal transduction, cell-cycle progression and cytokine production. The guanine nucleotide exchange factor Vav1 and the Wiscott-Aldrich syndrome protein (WASP) regulate the actin cytoskeleton in T cells and also regulate SMAC formation. In mice lacking the E3 ubiquitin ligase Cbl-b, the Vav-WASP signaling pathway is active in the absence of costimulation resulting in deregulated cytoskeletal reorganization, enhanced priming and expansion of autoreactive T cells, and the development of autoimmunity. This review discusses the role of Cbl-b, Vav and WASP in the regulation of SMAC formation and the implications for the maintenance of tolerance and the development of autoimmunity.  相似文献   
997.
998.
Neurofibromatosis type I (Nf1) is a GTPase-activating protein (GAP) that inactivates the oncoprotein Ras and plays important roles in nervous system development and learning. Alternative exon 23a falls within the Nf1 GAP domain coding sequence and is tightly regulated in favor of skipping in neurons; however, its biological function is not fully understood. Here we generated mouse embryonic stem (ES) cells with a constitutive endogenous Nf1 exon 23a inclusion, termed Nf1 23aIN/23aIN cells, by mutating the splicing signals surrounding the exon to better match consensus sequences. We also made Nf1 23aΔ/23aΔ cells lacking the exon. Active Ras levels are high in wild-type (WT) and Nf1 23aIN/23aIN ES cells, where the Nf1 exon 23a inclusion level is high, and low in Nf1 23aΔ/23aΔ cells. Upon neuronal differentiation, active Ras levels are high in Nf1 23aIN/23aIN cells, where the exon inclusion level remains high, but Ras activation is low in the other two genotypes, where the exon is skipped. Signaling downstream of Ras is significantly elevated in Nf1 23aIN/23aIN neurons. These results suggest that exon 23a suppresses the Ras-GAP activity of Nf1. Therefore, regulation of Nf1 exon 23a inclusion serves as a mechanism for providing appropriate levels of Ras signaling and may be important in modulating Ras-related neuronal functions.  相似文献   
999.

Purpose

Comparative life-cycle assessments (LCAs) today lack robust methods of interpretation that help decision makers understand and identify tradeoffs in the selection process. Truncating the analysis at characterization is misleading and existing practices for normalization and weighting may unwittingly oversimplify important aspects of a comparison. This paper introduces a novel approach based on a multi-criteria decision analytic method known as stochastic multi-attribute analysis for life-cycle impact assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.

Methods

To contrast different valuation methods, this study performs a comparative LCA of liquid and powder laundry detergents using three approaches to normalization and weighting: (1) characterization with internal normalization and equal weighting, (2) typical valuation consisting of external normalization and weights, and (3) SMAA-LCIA using outranking normalization and stochastic weighting. Characterized results are often represented by LCA software with respect to their relative impacts normalized to 100 %. Typical valuation approaches rely on normalization references, single value weights, and utilizes discrete numbers throughout the calculation process to generate single scores. Alternatively, SMAA-LCIA is capable of exploring high uncertainty in the input parameters, normalizes internally by pair-wise comparisons (outranking) and allows for the stochastic exploration of weights. SMAA-LCIA yields probabilistic, rather than discrete comparisons that reflect uncertainty in the relative performance of alternatives.

Results and discussion

All methods favored liquid over powder detergent. However, each method results in different conclusions regarding the environmental tradeoffs. Graphical outputs at characterization of comparative assessments portray results in a way that is insensitive to magnitude and thus can be easily misinterpreted. Typical valuation generates results that are oversimplified and unintentionally biased towards a few impact categories due to the use of normalization references. Alternatively, SMAA-LCIA avoids the bias introduced by external normalization references, includes uncertainty in the performance of alternatives and weights, and focuses the analysis on identifying the mutual differences most important to the eventual rank ordering.

Conclusions

SMAA-LCIA is particularly appropriate for comparative LCAs because it evaluates mutual differences and weights stochastically. This allows for tradeoff identification and the ability to sample multiple perspectives simultaneously. SMAA-LCIA is a robust tool that can improve understanding of comparative LCA by decision or policy makers.  相似文献   
1000.
As proliferating cells transit from interphase into M-phase, chromatin undergoes extensive reorganization, and topoisomerase (topo) IIα, the major isoform of this enzyme present in cycling vertebrate cells, plays a key role in this process. In this study, a human cell line conditional null mutant for topo IIα and a derivative expressing an auxin-inducible degron (AID)-tagged version of the protein have been used to distinguish real mitotic chromosome functions of topo IIα from its more general role in DNA metabolism and to investigate whether topo IIβ makes any contribution to mitotic chromosome formation. We show that topo IIβ does contribute, with endogenous levels being sufficient for the initial stages of axial shortening. However, a significant effect of topo IIα depletion, seen with or without the co-depletion of topo IIβ, is the failure of chromosomes to hypercompact when delayed in M-phase. This requires much higher levels of topo II protein and is impaired by drugs or mutations that affect enzyme activity. A prolonged delay at the G2/M border results in hyperefficient axial shortening, a process that is topo IIα-dependent. Rapid depletion of topo IIα has allowed us to show that its function during late G2 and M-phase is truly required for shaping mitotic chromosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号