首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4203篇
  免费   402篇
  国内免费   5篇
  4610篇
  2023年   29篇
  2022年   54篇
  2021年   72篇
  2020年   45篇
  2019年   64篇
  2018年   85篇
  2017年   87篇
  2016年   131篇
  2015年   239篇
  2014年   256篇
  2013年   265篇
  2012年   344篇
  2011年   323篇
  2010年   212篇
  2009年   183篇
  2008年   260篇
  2007年   259篇
  2006年   215篇
  2005年   182篇
  2004年   154篇
  2003年   155篇
  2002年   135篇
  2001年   77篇
  2000年   63篇
  1999年   65篇
  1998年   50篇
  1997年   26篇
  1996年   41篇
  1995年   33篇
  1994年   26篇
  1993年   17篇
  1992年   32篇
  1991年   42篇
  1990年   28篇
  1989年   33篇
  1988年   17篇
  1987年   22篇
  1986年   14篇
  1985年   19篇
  1983年   14篇
  1982年   12篇
  1978年   12篇
  1977年   11篇
  1975年   12篇
  1974年   22篇
  1973年   17篇
  1971年   14篇
  1970年   11篇
  1969年   12篇
  1967年   12篇
排序方式: 共有4610条查询结果,搜索用时 15 毫秒
101.
A 13 kb DNA fragment was isolated from a grapevine (Vitis var. Optima) genomic library by hybridizing with elicitor-induced stilbene synthase cDNA as a probe. After fragmentation with Eco RI, subcloning and sequencing, two full-size stilbene synthase genes (Vst1 and Vst2) and the 3 end of a third stilbene synthase gene (Vst3) were located within the 13 kb fragment. Vst1 and Vst2, differing only slightly in the coding region, are distinguished in the intron size and in the structure of the promoter region. The 5 flanking region of gene Vst1 contains a TATAA box at nucleotide –48. The substantial structural differences found for the promoters of the two genes are paralleled by a striking difference in the expression of the two genes in elicitor-treated cells. Moreover, the accumulation upon elicitation of six different stilbene synthase mRNAs was studied and found to differ by two orders of magnitude.  相似文献   
102.
Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing.  相似文献   
103.
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.  相似文献   
104.
Interactions between proinflammatory and cell maturation signals, and the pathways that regulate leukocyte migration, are of fundamental importance in controlling trafficking and recruitment of leukocytes during the processes of innate and adaptive immunity. We have investigated the molecular mechanisms by which selective Toll-like receptor (TLR)2 and TLR4 agonists regulate expression of CCR1 and CCR2 on primary human monocytes and THP-1 cells, a human monocytic cell line. We found that activation of either TLR2 (by Pam(3)CysSerLys(4)) or TLR4 (by purified LPS) resulted in down-modulation of both CCR1 and CCR2. Further investigation of TLR-induced down-modulation of CCR1 revealed differences in the signaling pathways activated, and chemokines generated, via the two TLR agonists. TLR2 activation caused slower induction of the NF-kappa B and mitogen-activated protein kinase signaling pathways and yet a much enhanced and prolonged macrophage-inflammatory protein 1 alpha (CC chemokine ligand 3) protein production, when compared with TLR4 stimulation. Enhanced macrophage-inflammatory protein 1 alpha production may contribute to the prolonged down-regulation of CCR1 cell surface expression observed in response to the TLR2 agonist, as preventing chemokine generation with the protein synthesis inhibitor cycloheximide, or CCR1 signaling with the receptor antagonist UCB35625, abolished TLR2- and TLR4-induced CCR1 down-modulation. This result suggests an autocrine pathway, whereby TLR activation can induce chemokine production, which then leads to homologous down-regulation of the cognate receptors. This work provides further insights into the mechanisms that regulate leukocyte recruitment and trafficking during TLR-induced inflammatory responses.  相似文献   
105.
雌激素神经保护作用机制:线粒体功能的调节   总被引:1,自引:0,他引:1  
大量研究表明雌激素具有神经保护作用,但其机制尚不清楚。近年来研究提示,雌激素的神经保护作用与线粒体有着密切联系。线粒体是细胞内能量和活性氧自由基(ROS)的主要来源,对细胞内信号转导、细胞存活与死亡调节等具有十分重要的影响。在生理和病理条件下,雌激素可多方面调节线粒体功能,包括影响ATP与ROS的生成、稳定线粒体膜电位、维护细胞内钙稳态,以及调节线粒体基因和蛋白表达等。本文主要从线粒体角度综述了雌激素神经保护作用及其机制。  相似文献   
106.
Comparison between wild-type and mutated glycoprotein hormone receptors (GPHRs), TSH receptor, FSH receptor, and LH-chorionic gonadotropin receptor is established to identify determinants involved in molecular activation mechanism. The basic aims of the current work are 1) the discrimination of receptor phenotypes according to the differences between activity states they represent, 2) the assignment of classified phenotypes to three-dimensional structural positions to reveal 3) functional-structural hot spots and 4) interrelations between determinants that are responsible for corresponding activity states. Because it is hard to survey the vast amount of pathogenic and site-directed mutations at GPHRs and to improve an almost isolated consideration of individual point mutations, we present a system for systematic and diversified sequence-structure-function analysis (http://www.fmp-berlin.de/ssfa). To combine all mutagenesis data into one set, we converted the functional data into unified scaled values. This at least enables their comparison in a rough classification manner. In this study we describe the compiled data set and a wide spectrum of functions for user-driven searches and classification of receptor functionalities such as cell surface expression, maximum of hormone binding capability, and basal as well as hormone-induced Galphas/Galphaq mediated cAMP/inositol phosphate accumulation. Complementary to known databases, our data set and bioinformatics tools allow functional and biochemical specificities to be linked with spatial features to reveal concealed structure-function relationships by a semiquantitative analysis. A comprehensive discrimination of specificities of pathogenic mutations and in vitro mutant phenotypes and their relation to signaling mechanisms of GPHRs demonstrates the utility of sequence-structure-function analysis. Moreover, new interrelations of determinants important for selective G protein-mediated activation of GPHRs are resumed.  相似文献   
107.
The lifetimes of fluorescent components of matrix NADH in isolated porcine heart mitochondria were investigated using time-resolved fluorescence spectroscopy. Three distinct lifetimes of fluorescence were resolved: 0.4 (63%), 1.8 (30%), and 5.7 (7%) ns (% total NADH). The 0.4 ns lifetime and the emission wavelength of the short component were consistent with free NADH. In addition to their longer lifetimes, the remaining pools also had a blue-shifted emission spectrum consistent with immobilized NADH. On the basis of emission frequency and lifetime data, the immobilized pools contributed >80% of NADH fluorescence. The steady-state kinetics of NADH entering the immobilized pools was measured in intact mitochondria and in isolated mitochondrial membranes. The apparent binding constants (K(D)s) for NADH in intact mitochondria, 2.8 mM (1.9 ns pool) and >3 mM (5.7 ns pool), were on the order of the estimated matrix [NADH] (approximately 3.5 mM). The affinities and fluorescence lifetimes resulted in an essentially linear relationship between matrix [NADH] and NADH fluorescence intensity. Mitochondrial membranes had shorter emission lifetimes in the immobilized poo1s [1 ns (34%) and 4.1 ns (8%)] with much higher apparent K(D)s of 100 microM and 20 microM, respectively. The source of the stronger NADH binding affinity in membranes is unknown but could be related to high order structure or other cofactors that are diluted out in the membrane preparation. In both preparations, the rate of NADH oxidation was proportional to the amount of NADH in the long lifetime pools, suggesting that a significant fraction of the bound NADH might be associated with oxidative phosphorylation, potentially in complex 1.  相似文献   
108.
A hot spring in the solfataric field of Pisciarelli (Naples-Italy) was analysed for Archaeal diversity. Total DNA was extracted from the environment, archaeal 16S rRNA genes were amplified with Archaea specific primers, and a clone library consisting of 201 clones was established. The clones were grouped in 10 different groups each representing a specific band pattern using restriction fragment length polymorphism (RFLP). Members of all 10 groups were sequenced and phylogenetically analyzed. Surprisingly, a high abundance of clones belonging to non-thermophilic Crenarchaeal clusters were detected together with the thermophilic archaeon Acidianus infernus in this thermophilic environment. Neither Sulfolobus species nor other hyperthermophilic Crenarchaeota were detected in the clone library. The relative abundance of the sequenced clones was confirmed by terminal restriction fragment analyses. Amplification of 16S rRNA genes from Archaea transferred from the surrounding environment was considered negligible because DNA from non-thermophilic Crenarchaeota incubated under conditions similar to the solfatara could not be PCR amplified after 5 min.  相似文献   
109.
Abeta42-lowering nonsteroidal anti-inflammatory drugs (NSAIDs) constitute the founding members of a new class of gamma-secretase modulators that avoid side effects of pan-gamma-secretase inhibitors on NOTCH processing and function, holding promise as potential disease-modifying agents for Alzheimer disease (AD). These modulators are active in cell-free gamma-secretase assays indicating that they directly target the gamma-secretase complex. Additional support for this hypothesis was provided by the observation that certain mutations in presenilin-1 (PS1) associated with early-onset familial AD (FAD) change the cellular drug response to Abeta42-lowering NSAIDs. Of particular interest is the PS1-DeltaExon9 mutation, which provokes a pathogenic increase in the Abeta42/Abeta40 ratio and dramatically reduces the cellular response to the Abeta42-lowering NSAID sulindac sulfide. This FAD PS1 mutant is unusual as a splice-site mutation results in deletion of amino acids Thr(291)-Ser(319) including the endoproteolytic cleavage site of PS1, and an additional amino acid exchange (S290C) at the exon 8/10 splice junction. By genetic dissection of the PS1-DeltaExon9 mutation, we now demonstrate that a synergistic effect of the S290C mutation and the lack of endoproteolytic cleavage is sufficient to elevate the Abeta42/Abeta40 ratio and that the attenuated response to sulindac sulfide results partially from the deficiency in endoproteolysis. Importantly, a wider screen revealed that a diminished response to Abeta42-lowering NSAIDs is common among aggressive FAD PS1 mutations. Surprisingly, these mutations were also partially unresponsive to gamma-secretase inhibitors of different structural classes. This was confirmed in a mouse model with transgenic expression of the PS1-L166P mutation, in which the potent gamma-secretase inhibitor LY-411575 failed to reduce brain levels of soluble Abeta42. In summary, these findings highlight the importance of genetic background in drug discovery efforts aimed at gamma-secretase, suggesting that certain AD mouse models harboring aggressive PS mutations may not be informative in assessing in vivo effects of gamma-secretase modulators and inhibitors.  相似文献   
110.
Hereditary inclusion body myopathy (HIBM) is a unique muscular disorder caused by mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene. GNE encodes a bi-functional enzyme acting in the biosynthetic pathway of sialic acid. Since the underlying myopathological mechanism leading to the disease phenotype is poorly understood, we have established human myoblasts cultures, derived from HIBM satellite cells carrying the homozygous M712T mutation, and identified cellular and molecular characteristics of these cells. HIBM and control myoblasts showed similar heterogeneous patterns of proliferation and differentiation. Upon apoptosis induction, phosphatidylserine externalization was similar in HIBM and controls. In contrast, the active forms of caspase-3 and -9 were strongly enhanced in most HIBM cultures compared to controls, while pAkt, downregulated in controls, remained high in HIBM cells. These results could indicate impaired apoptotic signaling in HIBM cells. Since satellite cells enable partial regeneration of the post-mitotic muscle tissue, these altered processes could contribute to the muscle mass loss seen in patients. The identification of survival defects in HIBM affected muscle cells could disclose new functions for GNE in muscle cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号