首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2635篇
  免费   255篇
  2023年   18篇
  2022年   35篇
  2021年   38篇
  2020年   47篇
  2019年   51篇
  2018年   60篇
  2017年   68篇
  2016年   71篇
  2015年   107篇
  2014年   130篇
  2013年   147篇
  2012年   159篇
  2011年   168篇
  2010年   98篇
  2009年   94篇
  2008年   140篇
  2007年   133篇
  2006年   111篇
  2005年   83篇
  2004年   92篇
  2003年   82篇
  2002年   62篇
  2001年   82篇
  2000年   73篇
  1999年   65篇
  1998年   30篇
  1997年   25篇
  1996年   42篇
  1995年   27篇
  1994年   21篇
  1993年   22篇
  1992年   34篇
  1991年   43篇
  1990年   38篇
  1989年   29篇
  1988年   21篇
  1987年   25篇
  1986年   17篇
  1985年   22篇
  1983年   16篇
  1982年   13篇
  1979年   16篇
  1978年   15篇
  1977年   14篇
  1975年   13篇
  1974年   22篇
  1973年   17篇
  1971年   15篇
  1969年   13篇
  1967年   12篇
排序方式: 共有2890条查询结果,搜索用时 15 毫秒
991.
After synthesis and transit through the nucleus, messenger RNAs (mRNAs) are exported to the cytoplasm through the nuclear pore complex (NPC). At the NPC, messenger ribonucleoproteins (mRNPs) first encounter the nuclear basket where mRNP rearrangements are thought to allow access to the transport channel. Here, we use single mRNA resolution live cell microscopy and subdiffraction particle tracking to follow individual mRNAs on their path toward the cytoplasm. We show that when reaching the nuclear periphery, RNAs are not immediately exported but scan along the nuclear periphery, likely to find a nuclear pore allowing export. Deletion or mutation of the nuclear basket proteins MLP1/2 or the mRNA binding protein Nab2 changes the scanning behavior of mRNPs at the nuclear periphery, shortens residency time at nuclear pores, and results in frequent release of mRNAs back into the nucleoplasm. These observations suggest a role for the nuclear basket in providing an interaction platform that keeps RNAs at the periphery, possibly to allow mRNP rearrangements before export.  相似文献   
992.
993.
994.
Floral morphology, nectar secretion strategies and the contribution of pollinators to the reproductive success of plants provide important clues regarding the levels of generalization or specialization in pollination systems. Anthesis throughout the day and night allows flowers to be visited by diurnal and nocturnal pollinators, promoting generalization or specialization. We studied three species in the diverse tropical genus Inga to: (1) quantify the response of flowers to successive nectar extractions and (2) determine the contribution of diurnal and nocturnal floral visitors to female reproductive success. Inga flowers could be clearly distinguished mainly on the basis of the staminal tube diameter and the quantities of filaments and pollen grains. Successive nectar removals led to a decrease of 60% in the total nectar secretion in I. vera and to increases of 20% in I. ingoides and 10% in I. striata. Despite these differences, the studied Inga spp. exhibited similar patterns of visitation rates and shared diurnal and nocturnal pollinators. Nocturnal pollinators contributed ten times more than diurnal pollinators to the female reproductive success of Inga. Floral morphology, nectar secretion patterns and pollination ecology data suggest an evolutionary trend towards specialization for nocturnal pollinators in Inga spp. with crepuscular or nocturnal flowers. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 230–245.  相似文献   
995.
The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands (P?<?0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23?±?0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51?±?778.71 μm2) and quantity per square centimeter (390?±?9 cm?2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03?±?1.75 W?m?2) and possessed the highest surface temperatures (39.47?±?0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.  相似文献   
996.
Insulin‐like growth factor‐1 (IGF‐1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. To examine whether IGF‐1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon‐gamma (IFN‐γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl‐2 ratios, and expression of apoptosis‐related proteases (caspase‐3 and ‐12) in motoneurons rendered by IFN‐γ in a dose‐dependent manner. Post‐treatment with IGF‐1 attenuated these changes. In addition, IGF‐1 treatment of motoneurons exposed to IFN‐γ decreased expression of inflammatory markers (cyclooxygenase‐2 and nuclear factor‐kappa B:inhibitor of kappa B ratio). Furthermore, IGF‐1 attenuated the loss of expression of IGF‐1 receptors (IGF‐1Rα and IGF‐1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN‐γ. To determine whether the protective effects of IGF‐1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ‐silenced VSC4.1 motoneurons following IFN‐γ and IGF‐1 exposure. These results suggest that IGF‐1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ.

  相似文献   

997.
998.
The Maillard reaction (also referred to as “glycation”) takes place between reducing sugars and compounds with free amino groups during thermal processing of foods. In the final stage of the complex reaction cascade, the so-called advanced glycation end products (AGEs) are formed, including proteins with various glycation structures. It has been suggested that some AGEs could have immunostimulatory effects. Here, we aimed to identify specific glycation structure(s) that could influence the T-cell immunogenicity and potential allergenicity of food allergens, using ovalbumin (OVA, an egg white allergen) as a model allergen. OVA was specifically modified with representative glycation structures: Nϵ-carboxymethyl lysine (CM-OVA), Nϵ-carboxyethyl lysine (CE-OVA), pyrraline (Pyr-OVA), or methylglyoxal-derived arginine derivatives (MGO-OVA). As well as AGE-OVA, a crude glycation product in thermal incubation of OVA with glucose, only Pyr-OVA, and not other modified OVAs, was efficiently taken up by bone marrow-derived murine dendritic cells (BMDCs). The uptake of Pyr-OVA was reduced in scavenger receptor class A (SR-A)-deficient BMDCs, but not in cells treated with inhibitors of scavenger receptor class B, galectin-3, or blocking antibodies against CD36, suggesting that pyrraline binds to SR-A. Compared with other modified OVAs, Pyr-OVA induced higher activation of OVA-specific CD4+ T-cells in co-culture with BMDCs. Furthermore, compared with native OVA, AGE-OVA and Pyr-OVA induced higher IgE production in mice. Pyrraline could induce better allergen uptake by DCs via association with SR-A and subsequently enhance CD4+ T-cell activation and IgE production. Our findings help us to understand how Maillard reaction enhances the potential allergenicity of food allergens.  相似文献   
999.
The mechanism of tight junction (TJ) assembly and the structure of claudins (Cldn) that form the TJ strands are unclear. This limits the molecular understanding of paracellular barriers and strategies for drug delivery across tissue barriers. Cldn3 and Cldn5 are both common in the blood-brain barrier but form TJ strands with different ultrastructures. To identify the molecular determinants of folding and assembly of these classic claudins, Cldn3/Cldn5 chimeric mutants were generated and analyzed by cellular reconstitution of TJ strands, live cell confocal imaging, and freeze-fracture electron microscopy. A comprehensive screening was performed on the basis of the rescue of mutants deficient for strand formation. Cldn3/Cldn5 residues in transmembrane segment 3, TM3 (Ala-127/Cys-128, Ser-136/Cys-137, Ser-138/Phe-139), and the transition of TM3 to extracellular loop 2, ECL2 (Thr-141/Ile-142) and ECL2 (Asn-148/Asp-149, Leu-150/Thr-151, Arg-157/Tyr-158), were identified to be involved in claudin folding and/or assembly. Blue native PAGE and FRET assays revealed 1% n-dodecyl β-d-maltoside-resistant cis-dimerization for Cldn5 but not for Cldn3. This homophilic interaction was found to be stabilized by residues in TM3. The resulting subtype-specific cis-dimer is suggested to be a subunit of polymeric TJ strands and contributes to the specific ultrastructure of the TJ detected by freeze-fracture electron microscopy. In particular, the Cldn5-like exoplasmic face-associated and particle-type strands were found to be related to cis-dimerization. These results provide new insight into the mechanisms of paracellular barrier formation by demonstrating that defined non-conserved residues in TM3 and ECL2 of classic claudins contribute to the formation of TJ strands with differing ultrastructures.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号