全文获取类型
收费全文 | 785篇 |
免费 | 65篇 |
国内免费 | 2篇 |
专业分类
852篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 5篇 |
2021年 | 12篇 |
2020年 | 7篇 |
2019年 | 10篇 |
2018年 | 12篇 |
2017年 | 20篇 |
2016年 | 16篇 |
2015年 | 27篇 |
2014年 | 42篇 |
2013年 | 59篇 |
2012年 | 69篇 |
2011年 | 80篇 |
2010年 | 42篇 |
2009年 | 33篇 |
2008年 | 58篇 |
2007年 | 59篇 |
2006年 | 67篇 |
2005年 | 76篇 |
2004年 | 31篇 |
2003年 | 23篇 |
2002年 | 28篇 |
2001年 | 8篇 |
2000年 | 6篇 |
1999年 | 8篇 |
1998年 | 5篇 |
1997年 | 8篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 7篇 |
1989年 | 3篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1962年 | 1篇 |
1960年 | 1篇 |
1951年 | 1篇 |
排序方式: 共有852条查询结果,搜索用时 15 毫秒
51.
52.
Natranaerobius thermophilus is an unusual extremophile because it is halophilic, alkaliphilic and thermophilic, growing optimally at 3.5 M Na+ , pH55°C 9.5 and 53°C. Mechanisms enabling this tripartite lifestyle are essential for understanding how microorganisms grow under inhospitable conditions, but remain unknown, particularly in extremophiles growing under multiple extremes. We report on the response of N. thermophilus to external pH at high salt and elevated temperature and identify mechanisms responsible for this adaptation. N. thermophilus exhibited cytoplasm acidification, maintaining an unanticipated transmembrane pH gradient of 1 unit over the entire extracellular pH range for growth. N. thermophilus uses two distinct mechanisms for cytoplasm acidification. At extracellular pH values at and below the optimum, N. thermophilus utilizes at least eight electrogenic Na+ (K+ )/H+ antiporters for cytoplasm acidification. Characterization of these antiporters in antiporter-deficient Escherichia coli KNabc showed overlapping pH profiles (pH 7.8–10.0) and Na+ concentrations for activity ( K 0.5 values 1.0–4.4 mM), properties that correlate with intracellular conditions of N. thermophilus . As the extracellular pH increases beyond the optimum, electrogenic antiport activity ceases, and cytoplasm acidification is achieved by energy-independent physiochemical effects (cytoplasmic buffering) potentially mediated by an acidic proteome. The combination of these strategies allows N. thermophilus to grow over a range of extracellular pH and Na+ concentrations and protect biomolecules under multiple extreme conditions. 相似文献
53.
Li H Sethuraman N Stadheim TA Zha D Prinz B Ballew N Bobrowicz P Choi BK Cook WJ Cukan M Houston-Cummings NR Davidson R Gong B Hamilton SR Hoopes JP Jiang Y Kim N Mansfield R Nett JH Rios S Strawbridge R Wildt S Gerngross TU 《Nature biotechnology》2006,24(2):210-215
As the fastest growing class of therapeutic proteins, monoclonal antibodies (mAbs) represent a major potential drug class. Human antibodies are glycosylated in their native state and all clinically approved mAbs are produced by mammalian cell lines, which secrete mAbs with glycosylation structures that are similar, but not identical, to their human counterparts. Glycosylation of mAbs influences their interaction with immune effector cells that kill antibody-targeted cells. Here we demonstrate that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of the yeast Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms. Glycoengineered P. pastoris provides a general platform for producing recombinant antibodies with human N-glycosylation. 相似文献
54.
Moh’d A. Salameh Juergen Wiegel 《Journal of industrial microbiology & biotechnology》2009,36(10):1281-1287
LipA and LipB of Thermosyntropha lipolytica DSM 11003 as previously published are the most alkalithermophilic (pH opt 25°C = 9.4–9.6, T opt = 96°C) and thermostable (T 1/2 24 h = 74–76°C) lipases currently known. The purified enzymes were analyzed in organic solvents for their ability to catalyze synthesis of diacylglycerols and various alcohol fatty acids. To obtain 100% recovery and avoid a 40% and 50% loss of catalytic activity during lyophilization of purified LipA and LipB, respectively, addition of 1 mg/ml bovine serum albumin (BSA) and 25% polyethylene glycol (PEG400) was required. LipA and LipB catalyzed esterification of fatty acids and alcohols with the highest yields for octyl oleate (LipA) and lauryl oleate (LipB) and also catalyzed synthesis of 1,3-dioleoyl glycerol, 1-oleoyl-3-lauroyl glycerol, and 1-oleoyl-3-octoyl glycerol. Isooctane was the most efficient solvent for esterification reactions at 85°C. Similar to the positional specificity for the hydrolytic reaction in aqueous solutions, LipA and LipB catalyzed in organic solvents the synthesis of diacylglycerol with esterification of position 1 and 3 with a yield of 62% for di-oleoyl glycerol. The reported conversion rates do not represent the full potential of these enzymes, since only 1/100th–1/1,000th of the protein concentrations usually used in commercial processes were available. However, use of slightly increased protein concentrations confirmed the trend to higher yields with higher protein concentrations. The obtained specificity and variety of the reactions catalyzed by LipA and LipB, and their high thermostability allowing synthesis to occur at 90°C, demonstrate their great potentials for industrial applications, particularly in structured lipid biosynthesis for substrates that are less soluble at mesobiotic temperatures. 相似文献
55.
An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase 总被引:3,自引:0,他引:3
Carotenoids play crucial roles in structure and function of the photosynthetic apparatus of bacteria, algae, and higher plants. The entry-step reaction to carotenoid biosynthesis is catalyzed by the phytoene synthase (PSY), which is structurally and functionally related in all organisms. A comparative genomic analysis regarding the PSY revealed that the green algae Ostreococcus and Micromonas possess two orthologous copies of the PSY genes, indicating an ancient gene duplication event that produced two classes of PSY in algae. However, some other green algae (Chlamydomonas reinhardtii, Chlorella vulgaris, and Volvox carteri), red algae (Cyanidioschyzon merolae), diatoms (Thalassiosira pseudonana and Phaeodactylum tricornutum), and higher plants retained only one class of the PSY gene whereas the other gene copy was lost in these species. Further, similar to the situation in higher plants recent gene duplications of PSY have occurred for example in the green alga Dunaliella salina/bardawil. As members of the PSY gene families in some higher plants are differentially regulated during development or stress, the discovery of two classes of PSY gene families in some algae suggests that carotenoid biosynthesis in these algae is differentially regulated in response to development and environmental stress as well. 相似文献
56.
Most biotherapeutic drugs are recombinant monoclonal antibodies which are mostly produced in monoclonal cell lines derived from Chinese hamster ovary (CHO) cells. Various clones expressing a monoclonal recombinant antibody were analyzed and a correlation of the antibody concentration and the relative mRNA level of calreticulin (CALR), glucose‐regulated protein 78 and 94 kDa (GRP78, GRP94) and spliced X‐box binding protein 1 (XPB1) was observed. By means of these results we were motivated to establish a novel selection system based on endoplasmic reticulum (ER) stress, which allows the rapid identification and isolation of high‐expressing clones out of a pool mainly consisting of low‐ and medium‐producing cells. Several ER stress responsive elements were tested with the aid of a recombinase mediated cassette exchange (RMCE) procedure. Very surprisingly, only GRP78 reporter constructs were strongly stimulated upon antibody expression. Furthermore we found that GRP78 reporter constructs are very suitable to reflect the level of antibody expression (IgG) in recombinant CHO cells. Based on these results, it is concluded, that the novel ER stress based selection system developed during this study is suitable to identify and isolate clones with a high level of antibody expression. Biotechnol. Bioeng. 2012; 109: 2599–2611. © 2012 Wiley Periodicals, Inc. 相似文献
57.
Stream substratum restoration is a widely applied tool to improve spawning habitat quality for salmonid fishes. However, there is a lack of studies which comprehensively assess effects of the restoration on site, as well as on downstream habitats. Our study addressed effects at both locations and compared abiotic (analyses of texture, penetration resistance, oxygen concentration, redox, nitrite, nitrate, ammonium, pH, electric conductivity, temperature) with biotic (depth-specific macroinvertrebrate abundance and diversity, brown trout hatching success) indicators before and after excavation of the substratum in a highly colmated brown trout spawning site. Strong improvements of hyporheic water conditions (increased oxygen supply and redox potential, reduced concentrations of nitrite and ammonium) as well as ~50 % reductions of substratum compaction and fine sediment content were observed 1 day after the restoration measure. Improvements of habitat quality were still detectable 3 months after treatment. Consequently, the hatching success of Salmo trutta eggs increased from 0 % to 77 % after the restoration. Short-term decrease of macroinvertebrate abundance (from 13.1 to 3.9 macroinvertebrates/kg substratum) was observed within the hyporheic zone of the restoration site, but after 3 months, the number of taxa increased from 13 to 22 taxa and abundance reached 17.9 macroinvertebrates/kg. Significantly increased fine sediment deposition was detected within 1 km downstream of the restoration site and may negatively affect these habitats. Trade-offs between positive effects at restored sites and negative effects in downstream habitats need to be considered for a comprehensive evaluation of stream substratum restoration. 相似文献
58.
Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. 总被引:41,自引:0,他引:41
Peter Rockel Frank Strube Andra Rockel Juergen Wildt Werner M Kaiser 《Journal of experimental botany》2002,53(366):103-110
NO (nitric oxide) production from sunflower plants (Helianthus annuus L.), detached spinach leaves (Spinacia oleracea L.), desalted spinach leaf extracts or commercial maize (Zea mays L.) leaf nitrate reductase (NR, EC 1.6.6.1) was continuously followed as NO emission into the gas phase by chemiluminescence detection, and its response to post-translational NR modulation was examined in vitro and in vivo. NR (purified or in crude extracts) in vitro produced NO at saturating NADH and nitrite concentrations at about 1% of its nitrate reduction capacity. The K(m) for nitrite was relatively high (100 microM) compared to nitrite concentrations in illuminated leaves (10 microM). NO production was competitively inhibited by physiological nitrate concentrations (K(i)=50 microM). Importantly, inactivation of NR in crude extracts by protein phosphorylation with MgATP in the presence of a protein phosphatase inhibitor also inhibited NO production. Nitrate-fertilized plants or leaves emitted NO into purified air. The NO emission was lower in the dark than in the light, but was generally only a small fraction of the total NR activity in the tissue (about 0.01-0.1%). In order to check for a modulation of NO production in vivo, NR was artificially activated by treatments such as anoxia, feeding uncouplers or AICAR (a cell permeant 5'-AMP analogue). Under all these conditions, leaves were accumulating nitrite to concentrations exceeding those in normal illuminated leaves up to 100-fold, and NO production was drastically increased especially in the dark. NO production by leaf extracts or intact leaves was unaffected by nitric oxide synthase inhibitors. It is concluded that in non-elicited leaves NO is produced in variable quantities by NR depending on the total NR activity, the NR activation state and the cytosolic nitrite and nitrate concentration. 相似文献
59.
Andr Gomes-dos-Santos Manuel Lopes-Lima Andr M Machado Antnio Marcos Ramos Ana Usi Ivan N Bolotov Ilya V Vikhrev Sophie Breton L Filipe C Castro Rute R da Fonseca Juergen Geist Martin E
sterling Vincent Pri Amílcar Teixeira Han Ming Gan Oleg Simakov Elsa Froufe 《DNA research》2021,28(2)
Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species’ unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation. 相似文献
60.
The relationship between inflammation and new bone formation in patients with ankylosing spondylitis