首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   54篇
  国内免费   17篇
  2023年   5篇
  2022年   7篇
  2021年   9篇
  2020年   3篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   19篇
  2013年   17篇
  2012年   23篇
  2011年   20篇
  2010年   14篇
  2009年   21篇
  2008年   16篇
  2007年   23篇
  2006年   12篇
  2005年   24篇
  2004年   11篇
  2003年   16篇
  2002年   16篇
  2001年   15篇
  2000年   13篇
  1999年   12篇
  1998年   14篇
  1997年   10篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   8篇
  1986年   3篇
  1985年   9篇
  1984年   7篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1977年   7篇
  1976年   7篇
  1975年   3篇
  1972年   7篇
  1971年   7篇
  1970年   8篇
  1968年   5篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
51.
Superantigens, including bacterial enterotoxins, are a family of proteins that bind simultaneously to MHC class II molecules and the Vbeta regions of T cell receptors. This cross-linking results in the activation of a large population of T cells that release massive amounts of inflammatory cytokines, ultimately causing a condition known as toxic shock syndrome. The staphylococcal superantigen toxic shock syndrome toxin-1 (TSST-1) is a causative agent of this disease, but its structure in complex with the cognate T cell receptor (human Vbeta2.1) has not been determined. To understand the molecular details of the interaction and to develop high affinity antagonists to TSST-1, we used directed evolution to generate a panel of high affinity receptors for TSST-1. Yeast display libraries of random and site-directed hVbeta2.1 mutants were selected for improved domain stability and for higher affinity binding to TSST-1. Stability mutations allowed the individual Vbeta domains to be expressed in a bacterial expression system. Affinity mutations were generated in CDR2 and FR3 residues, yielding improvements in affinity of greater than 10,000-fold (a K(D) value of 180 pmol). Alanine scanning mutagenesis of hVbeta2.1 wild-type and mutated residues allowed us to generate a map of the binding site for TSST-1 and to construct a docking model for the hVbeta2.1-TSST-1 complex. Our experiments suggest that the energetic importance of a single hVbeta2.1 wild-type residue likely accounts for the restriction of TSST-1 specificity to only this human Vbeta region. The high affinity mutants described here thus provide critical insight into the molecular basis of TSST-1 specificity and serve as potential leads toward the development of therapeutic agents for superantigen-mediated disease.  相似文献   
52.
The third complementarity-determining regions (CDR3s) of antibodies and T cell receptors (TCRs) have been shown to play a major role in antigen binding and specificity. Consistent with this notion, we demonstrated previously that high-affinity, peptide-specific TCRs could be generated in vitro by mutations in the CDR3alpha region of the 2C TCR. In contrast, it has been argued that CDR1 and CDR2 are involved to a greater extent than CDR3s in the process of MHC restriction, due to their engagement of MHC helices. Based on this premise, we initiated the present study to explore whether higher affinity TCRs generated through mutations in these CDRs or other regions would lead to significant reductions in peptide specificity (i.e. the result of greater binding energy gained through interactions with major histocompatibility complex (MHC) helices). Yeast-display technology and flow sorting were used to select high-affinity TCRs from libraries of CDR mutants or random mutants. High-affinity TCRs with mutations in the first residue of the Valpha, CDR1, CDR2, or CDR3 were isolated. Unexpectedly, every TCR mutant, including those in CDR1 and CDR2, retained remarkable peptide specificity. Molecular modeling of various mutants suggested that such exquisite specificity may be due to: (1) enhanced electrostatic interactions with key peptide or MHC residues; or (2) stabilization of CDRs in specific conformations. The results indicate that the TCR is positioned so that virtually every CDR can contribute to the antigen-specificity of a T cell. The conserved diagonal docking of TCRs could thus orient each CDR loop to sense the peptide directly or indirectly through peptide-induced effects on the MHC.  相似文献   
53.
Extracellular adenosine-5'-triphosphate (ATP) is involved in a variety of relevant regulatory mechanisms at a cellular level and has therefore been focus of extensive research. One of the major challenges associated with measuring this key regulatory analyte is the ability to detect and localize extracellular ATP with sufficient spatial and temporal resolution in physiological environments. In this study, scanning electrochemical microscopy (SECM) utilizing an amperometric micro-biosensor based on co-immobilization of the enzymes glucose oxidase and hexokinase is applied for imaging ATP transport through a porous polycarbonate membrane under physiologically relevant conditions. The enzymatic biosensor operates on competitive consumption of the substrate glucose between the immobilized enzymes glucose oxidase and hexokinase involving ATP as a co-substrate. Quantitative determination of the ATP concentration is based on a linear correlation between the glucose consumption and the ATP level. Integration of the amperometric ATP micro-biosensor into a dual micro-disk electrode configuration is achieved by immobilizing the enzymes at one of the micro-disk electrodes while the second disk serves as an unmodified amperometric probe for controlled positioning of the micro-biosensor in close proximity to the sample surface enabling quantification of the obtained current signal.  相似文献   
54.
目的对实验动物皮肤病原真菌2种培养方法进行了比较。方法将采集到的3只皮肤真菌感染病兔样品经由沙氏平皿法和沙氏试管斜面培养法分别进行培养。结果在3只真菌感染病兔中应用试管斜面法我们只检测到1例皮肤病原真菌阳性,而采用沙氏平皿法3例阳性全部检出。结论结合临床检测经验,我们认为本研究的沙氏平皿法优于沙氏试管斜面法,在实验动物皮肤病原真菌常规检测中具有推广应用价值。  相似文献   
55.
链脲佐菌素诱导长爪沙鼠Ⅰ型糖尿病模型的实验研究   总被引:1,自引:0,他引:1  
目的探讨链脲佐菌素(STZ)诱导长爪沙鼠Ⅰ型糖尿病模型的可能性,并观察模型动物早期肾脏损害情况。方法雄性长爪沙鼠96只,随机分为正常对照组(NC组)、模型组1(DM1组)、模型组2(DM2组),DM1及DM2组沙鼠分别一次性腹腔注射100 mg/kg、200 mg/kg STZ,NC组注射等量柠檬酸盐缓冲溶液。注射STZ后1、2、4、6周末,分别监测沙鼠一般情况,血糖、胰岛素等血清学指标和尿液指标,并处死沙鼠进行胰腺和肾脏组织的病理学检查。结果注射STZ 24 h后,DM2组及DM1组部分沙鼠逐渐出现典型的"三多一少"症状,随着病程的发展,DM2组沙鼠持续高血糖,DM1组沙鼠血糖值与NC组差异有显著性(P0.05),但有下降趋势;DM2组沙鼠胰岛素显著性降低(P0.05),其他血清学指标及尿液指标均显著性升高(P0.05),DM1组沙鼠各指标差异无显著性。DM2组沙鼠及DM1组少数沙鼠胰腺组织中可见胰岛β细胞减少、空泡样变性等变化,DM2组沙鼠肾脏组织中出现肾小球基质增多,毛细血管襻扩张等病变,DM1组沙鼠肾脏组织未见明显变化。结论 STZ 200 mg/kg可成功诱导长爪沙鼠Ⅰ型糖尿病模型,在病程早期沙鼠肾脏结构和功能已经发生改变。  相似文献   
56.
57.
The TLR7 agonist imiquimod has been used successfully as adjuvant for skin treatment of virus-associated warts and basal cell carcinoma. The effects of skin TLR7 triggering on respiratory leukocyte populations are unknown. In a placebo-controlled experimental animal study we have used multicolour flow cytometry to systematically analyze the modulation of respiratory leukocyte subsets after skin administration of imiquimod. Compared to placebo, skin administration of imiquimod significantly increased respiratory dendritic cells (DC) and natural killer cells, whereas total respiratory leukocyte, alveolar macrophages, classical CD4+ T helper and CD8+ T killer cell numbers were not or only moderately affected. DC subpopulation analyses revealed that elevation of respiratory DC was caused by an increase of respiratory monocytic DC and CD11b(hi) DC subsets. Lymphocyte subpopulation analyses indicated a marked elevation of respiratory natural killer cells and a significant reduction of B lymphocytes. Analysis of cytokine responses of respiratory leukocytes after stimulation with Klebsiella pneumonia indicated reduced IFN-γ and TNF-α expression and increased IL-10 and IL-12p70 production after 7 day low dose skin TLR7 triggering. Additionally, respiratory NK cytotoxic activity was increased after 7d skin TLR7 triggering. In contrast, lung histology and bronchoalveolar cell counts were not affected suggesting that skin TLR7 stimulation modulated respiratory leukocyte composition without inducing overt pulmonary inflammation. These data suggest the possibility to modulate respiratory leukocyte composition and respiratory cytokine responses against pathogens like Klebsiella pneumonia through skin administration of a clinically approved TLR7 ligand. Skin administration of synthetic TLR7 ligands may represent a novel, noninvasive means to modulate respiratory immunity.  相似文献   
58.
Staphylococcus aureus produces superantigens (SAgs) that bind and cross-link T cells and APCs, leading to activation and proliferation of immune cells. SAgs bind to variable regions of the β-chains of T cell receptors (Vβ-TCRs), and each SAg binds a unique subset of Vβ-TCRs. This binding leads to massive cytokine production and can result in toxic shock syndrome (TSS). The most abundantly produced staphylococcal SAgs and the most common causes of staphylococcal TSS are TSS toxin-1 (TSST-1), and staphylococcal enterotoxins B and C (SEB and SEC, respectively). There are several characterized variants of humans SECs, designated SEC1-4, but only one variant of SEB has been described. Sequencing the seb genes from over 20 S. aureus isolates show there are at least five different alleles of seb, encoding forms of SEB with predicted amino acid substitutions outside of the predicted immune-cell binding regions of the SAgs. Examination of purified, variant SEBs indicates that these amino acid substitutions cause differences in proliferation of rabbit splenocytes in vitro. Additionally, the SEBs varied in lethality in a rabbit model of TSS. The SEBs were diverse in their abilities to cause proliferation of human peripheral blood mononuclear cells, and differed in their activation of subsets of T cells. A soluble, high-affinity Vβ-TCR, designed to neutralize the previously characterized variant of SEB (SEB1), was able to neutralize the variant SEBs, indicating that this high-affinity peptide may be useful in treating a variety of SEB-mediated illnesses.  相似文献   
59.

Background

Inbred mouse strains are used in different models of respiratory diseases but the variation of critical respiratory leukocyte subpopulations across different strains is unknown.

Methods

By using multiparameter flow cytometry we have quantitated respiratory leukocyte subsets including dendritic cells subpopulations, macrophages, classical T and B cells, natural killer cells, γδTCR+ T cells and lineage-negative leukocytes in the five most common inbred mouse strains BALB/c, C57BL/6, DBA/2, 129SV and C3H. To minimize confounding environmental factors, age-matched animals were received from the same provider and were housed under identical specific-pathogen-free conditions.

Results

Results revealed significant strain differences with respect to respiratory neutrophils (p=0.005; up to 1.4 fold differences versus C57BL/6 mice), eosinophils (p=0.029; up to 2.7 fold), certain dendritic cell subsets (p≤0.0003; up to 3.4 fold), T (p<0.001; up to 1.6 fold) and B lymphocyte subsets (p=0.005; up to 0.4 fold), γδ T lymphocytes (p=0.003; up to 1.6 fold), natural killer cells (p<0.0001; up to 0.6 fold) and lineage-negative innate leukocytes (p≤0.007; up to 3.6 fold). In contrast, total respiratory leukocytes, macrophages, total dendritic cells and bronchoalveolar lavage leukocytes did not differ significantly. Stimulation of respiratory leukocytes via Toll-like receptor 4 and 9 as well as CD3/CD28 revealed significant strain differences of TNF-α and IL-10 production.

Conclusion

Our study demonstrates significant strain heterogeneity of respiratory leukocyte subsets that may impact respiratory immunity in different disease models. Additionally, the results may help identification of optimal strains for purification of rare respiratory leukocyte subsets for ex vivo analyses.  相似文献   
60.
T cells are known to cross-react with diverse peptide MHC Ags through their alphabeta TCR. To explore the basis of such cross-reactivity, we examined the 2C TCR that recognizes two structurally distinct ligands, SIY-K(b) and alloantigen QL9-L(d). In this study we characterized the cross-reactivity of several high-affinity 2C TCR variants that contained mutations only in the CDR3alpha loop. Two of the TCR lost their ability to cross-react with the reciprocal ligand (SIY-K(b)), whereas another TCR (m67) maintained reactivity with both ligands. Crystal structures of four of the TCRs in complex with QL9-L(d) showed that CDR1, CDR2, and CDR3beta conformations and docking orientations were remarkably similar. Although the CDR3alpha loop of TCR m67 conferred a 2000-fold higher affinity for SIY-K(b), the TCR maintained the same docking angle on QL9-L(d) as the 2C TCR. Thus, CDR3alpha dictated the affinity and level of cross-reactivity, yet it did so without affecting the conserved docking orientation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号