首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   39篇
  国内免费   1篇
  2022年   4篇
  2021年   3篇
  2019年   5篇
  2018年   5篇
  2014年   14篇
  2013年   12篇
  2012年   13篇
  2011年   16篇
  2010年   8篇
  2009年   14篇
  2008年   14篇
  2007年   17篇
  2006年   10篇
  2005年   17篇
  2004年   11篇
  2003年   11篇
  2002年   15篇
  2001年   11篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1987年   7篇
  1985年   9篇
  1984年   7篇
  1983年   7篇
  1982年   5篇
  1979年   2篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   8篇
  1971年   7篇
  1970年   8篇
  1969年   2篇
  1968年   5篇
  1965年   2篇
  1959年   2篇
  1937年   2篇
  1932年   2篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
21.
When the environment changes, sensory systems can adapt plastically or evolve genetically to the new surroundings, and traits and behaviours reliant on these sensory systems may also change, leading to altered evolutionary trajectories. We tested for differences in colour‐based foraging preferences of guppies (Poecilia reticulata) that lived for 6–10 generations under each of three light environments (green, lilac or control) to determine whether evolution under different light environments alters visually based behaviour. When tested in a common light environment, we found differences in pecking behaviour between treatments that were likely due to changes in the visual system. Pecking behaviour towards green stimuli was consistent across light treatments, possibly reflecting the importance of detecting green algae in the wild. The blue stimulus was only pecked at by fish from the control environments. Behaviour towards long wavelength stimuli varied, possibly due to the polymorphic nature of the long wavelength opsins. These results are consistent with one component of sensory drive but do not allow us to conclude whether these differences are due to plastic or evolved responses.  相似文献   
22.
23.
The MAP kinase Fus3 regulates many different signal transduction outputs that govern the ability of Saccharomyces cerevisiae haploid cells to mate. Here we characterize Fus3 localization and association with other proteins. By indirect immunofluorescence, Fus3 localizes in punctate spots throughout the cytoplasm and nucleus, with slightly enhanced nuclear localization after pheromone stimulation. This broad distribution is consistent with the critical role Fus3 plays in mating and contrasts that of Kss1, which concentrates in the nucleus and is not required for mating. The majority of Fus3 is soluble and not bound to any one protein; however, a fraction is stably bound to two proteins of approximately 60 and approximately 70 kDa. Based on fractionation and gradient density centrifugation properties, Fus3 exists in a number of complexes, with its activity critically dependent upon association with other proteins. In the presence of alpha factor, nearly all of the active Fus3 localizes in complexes of varying size and specific activity, whereas monomeric Fus3 has little activity. Fus3 has highest specific activity within a 350- to 500-kDa complex previously shown to contain Ste5, Ste11, and Ste7. Ste5 is required for Fus3 to exist in this complex. Upon alpha factor withdrawal, a pool of Fus3 retains activity for more than one cell cycle. Collectively, these results support Ste5's role as a tether and suggest that association of Fus3 in complexes in the presence of pheromone may prevent inactivation in addition to enhancing activation.  相似文献   
24.
Identification of major proteins in maize egg cells   总被引:15,自引:0,他引:15  
In most flowering plants, the female gametophyte develops in an ovule deeply embedded in the ovary. Through double fertilization, the egg cell fuses with the sperm cell, resulting in a zygote, which develops into the embryo. In the present study, we analyzed egg cell lysates by polyacrylamide gel electrophoresis and subsequent mass spectrometry-based proteomics technology, and identified major protein components expressed in the egg cell. The identified proteins included three cytosolic enzymes of the glycolytic pathway, glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase and triosephosphate isomerase, two mitochondrial proteins, the ATP synthase beta-subunit and an adenine nucleotide transporter, and annexin p35. In addition, expression levels of these proteins in the egg cell were compared with those in the early embryo, the central cell and the suspension cell. Annexin p35 was highly expressed only in the egg cell, and glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase and the adenine nucleotide transporter were expressed at higher levels in egg cells than in central and cultured cells. These results indicate that annexin p35 in the egg cell and zygote is involved in the exocytosis of cell wall materials, which is induced by a fertilization-triggered increase in cytosolic Ca2+ levels, and that the egg cell is rich in an enzyme subset for the energy metabolism.  相似文献   
25.
Enhanced resistance of barley (Hordeum vulgare L. cv. Ingrid) against barley powdery mildew (Blumeria graminis f. sp. hordei race A6) was induced by abiotic stress in a concentration-dependent manner. The papilla-mediated resistance was not only induced by osmotic stress, but also by proton stress. Resistance was directly correlated with increasing concentrations of various salts in the nutrient solution. Resistance induced by proton stress also depended on the stress intensity. Resistance induction occurred even at low stress intensities. Any specific ion toxicity affecting the fungal growth directly, and therefore leading to enhanced pathogen resistance, can be excluded because of the independence of resistance induction of the ion used and of the time course of sodium accumulation in the leaves. BCI-4, a marker for benzo[1,2,3]thiadiazolecarbothioic acid S-methyl ester (BTH)-induced resistance was not induced by these abiotic stresses. However, resistance was induced in the same concentration-dependent manner by the application of the stress hormone ABA to the root medium. During the relief of water stress, resistance did not decrease constantly. On the contrary, after a phase of decreasing resistance for 24 h the pathogen resistance increased again for 48 h before decreasing finally to control levels.  相似文献   
26.
When two proteins associate they form a molecular interface that is a structural and energetic mosaic. Within such interfaces, individual amino acid residues contribute distinct binding energies to the complex. In combination, these energies are not necessarily additive, and significant positive or negative cooperative effects often exist. The basis of reliable algorithms to predict the specificities and energies of protein-protein interactions depends critically on a quantitative understanding of this cooperativity. We have used a model protein-protein system defined by an affinity maturation pathway, comprising variants of a T cell receptor Vbeta domain that exhibit an overall affinity range of approximately 1500-fold for binding to the superantigen staphylococcal enterotoxin C3, in order to dissect the cooperative and additive energetic contributions of residues within an interface. This molecular interaction has been well characterized previously both structurally, by x-ray crystallographic analysis, and energetically, by scanning alanine mutagenesis. Through analysis of group and individual maturation and reversion mutations using surface plasmon resonance spectroscopy, we have identified energetically important interfacial residues, determined their cooperative and additive energetic properties, and elucidated the kinetic and thermodynamic bases for molecular evolution in this system. The summation of the binding free energy changes associated with the individual mutations that define this affinity maturation pathway is greater than that of the fully matured variant, even though the affinity gap between the end point variants is relatively large. Two mutations in particular, both located in the complementarity determining region 2 loop of the Vbeta domain, exhibit negative cooperativity.  相似文献   
27.
Ca(2+)-saturated calmodulin (CaM) directly associates with and activates CaM-dependent protein kinase I (CaMKI) through interactions with a short sequence in its regulatory domain. Using heteronuclear NMR (13)C-(15)N-(1)H correlation experiments, the backbone assignments were determined for CaM bound to a peptide (CaMKIp) corresponding to the CaM-binding sequence of CaMKI. A comparison of chemical shifts for free CaM with those of the CaM.CaMKIp complex indicate large differences throughout the CaM sequence. Using NMR techniques optimized for large proteins, backbone resonance assignments were also determined for CaM bound to the intact CaMKI enzyme. NMR spectra of CaM bound to either the CaMKI enzyme or peptide are virtually identical, indicating that calmodulin is structurally indistinguishable when complexed to the intact kinase or the peptide CaM-binding domain. Chemical shifts of CaM bound to a peptide (smMLCKp) corresponding to the calmodulin-binding domain of smooth muscle myosin light chain kinase are also compared with the CaM.CaMKI complexes. Chemical shifts can differentiate one complex from another, as well as bound versus free states of CaM. In this context, the observed similarity between CaM.CaMKI enzyme and peptide complexes is striking, indicating that the peptide is an excellent mimetic for interaction of calmodulin with the CaMKI enzyme.  相似文献   
28.
The lung is protected against oxidative stress by a variety of antioxidants and type II pneumocytes seem to play an important role in antioxidant defense. Previous studies have shown that inhalation of NO2 results in acute and chronic lung injury. How the expression and enzyme activity of antioxidant enzymes are influenced in type II cells of different inflammatory stages has yet not been studied. To elucidate this question, we exposed rats to 10 ppm NO2 for 3 or 20 days to induce acute or chronic lung injury. From these and air-breathing rats, type II pneumocytes were isolated. The mRNA expression and protein content of CuZnSOD and MnSOD as well as total SOD-specific enzyme activity were determined. For the acute lung injury (3 d NO2), the expression of CuZnSOD mRNA was significantly increased, while MnSOD expression was significantly reduced after 3 days of NO 2 exposure. For the chronic lung injury (20 d NO2), CuZnSOD expression was still enhanced, while MnSOD expression was comparable to control. In parallel to CuZnSOD mRNA expression, the protein amount was significantly increased in acute and chronic lung injury however MnSOD protein content exhibited no intergroup differences. Total SOD enzyme activity showed a significant decrease after 3 days of NO2 exposure and was similar to control after 20 days. We conclude that during acute and chronic lung injury in type II pneumocytes expression and protein synthesis of CuZnSOD and MnSOD are regulated differently.  相似文献   
29.
We have characterized a simplified method to determine the relative thermal stability of single-chain antibodies by following the irreversible denaturation of scFv fusions on the surface of yeast by flow cytometry. The method was highly reproducible and correlated well with other methods used to monitor thermal denaturation of the soluble proteins. We found a range of thermal stabilities for wild-type single-chain antibodies with half-maximum denaturation temperatures between 43 and 61 degrees C. The ability to quantitate thermal stability of antibodies or other proteins that are immobilized on the surface of yeast allows rapid comparisons of primary structural information with stability. Thermal denaturation could be a useful parameter to consider in the choice of scFv fragments for various applications.  相似文献   
30.
Directed evolution of a single-chain class II MHC product by yeast display   总被引:1,自引:0,他引:1  
Many autoimmune diseases have been linked to the class II region of the major histocompatibility complex (MHC). The linkage is thought to be a result of autoreactive T cells that recognize self-peptides bound to a product of this locus. For example, T cells from non-obese diabetic mice recognize specific 'diabetogenic' peptides bound to a class II MHC allele called I-A(g7). The I-A(g7) molecule is noted for being unstable and difficult to work with, especially in soluble form. In this work, yeast surface display combined with fluorescence-activated cell sorting was used as a means of directed evolution to engineer stabilized variants of a single-chain form of I-A(g7). A library containing mutations at two residues (positions 56 and 57 of the I-A(g7) beta-chain) that are important in the class II disease associations yielded stabilized mutants with preferences for a glutamic acid at residue 56 and a leucine at residue 57. Random mutation of I-A(g7) followed by selection with an anti-I-A(g7) antibody also yielded stabilized variants with mutations in other residues. The methods described here allow the discovery of novel MHC complexes that could facilitate structural studies and provide new opportunities in the development of diagnostics or antagonists of class II MHC-associated diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号