首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   48篇
  623篇
  2023年   4篇
  2022年   9篇
  2021年   5篇
  2020年   9篇
  2019年   6篇
  2018年   11篇
  2017年   9篇
  2016年   30篇
  2015年   45篇
  2014年   51篇
  2013年   59篇
  2012年   63篇
  2011年   43篇
  2010年   30篇
  2009年   18篇
  2008年   35篇
  2007年   24篇
  2006年   22篇
  2005年   28篇
  2004年   28篇
  2003年   16篇
  2002年   15篇
  2001年   5篇
  2000年   7篇
  1999年   12篇
  1998年   6篇
  1997年   8篇
  1996年   7篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有623条查询结果,搜索用时 0 毫秒
11.
Although substantial information is available regarding the fatty acid composition of lipids of the yolk and of the developing tissues of the chicken embryo, there is little knowledge on this topic for other avian species. The aim of the present study was to compare the yolk and embryonic tissue fatty acid profiles for a species selecting its food in the wild (the lesser black backed gull) with one fed on a standard commercial diet (the commercially reared pheasant). The fatty acid compositions of the yolk lipids were determined, and major differences were observed between the two species. In particular, the phospholipid of the gull yolk was enriched in 20:4n-6 and 22:6n-3 (18.8 and 7.1%, respectively, by weight of total fatty acids) in comparison with the pheasant (4.0 and 4.1%, respectively). The fatty acid compositions of the embryonic tissues were determined using eggs incubated in the laboratory. For the liver and heart, the fatty acid composition of the lipids in the two species reflected the initial yolk composition, with the gull tissue lipids generally containing higher proportions of 20:4n-6 and 22:6n-3 than those of the pheasant. In contrast, the fatty acid profiles of the brain phospholipid were essentially identical in the two species, with 20:4n-6 and 22:6n-3 comprising approximately 9 and 17%, respectively, of total fatty acids in both cases.  相似文献   
12.

Background

Mental disorders may be reducible to sets of symptoms, connected through systems of causal relations. A clinical staging model predicts that in earlier stages of illness, symptom expression is both non-specific and diffuse. With illness progression, more specific syndromes emerge. This paper addressed the hypothesis that connection strength and connection variability between mental states differ in the hypothesized direction across different stages of psychopathology.

Methods

In a general population sample of female siblings (mostly twins), the Experience Sampling Method was used to collect repeated measures of three momentary mental states (positive affect, negative affect and paranoia). Staging was operationalized across four levels of increasing severity of psychopathology, based on the total score of the Symptom Check List. Multilevel random regression was used to calculate inter- and intra-mental state connection strength and connection variability over time by modelling each momentary mental state at t as a function of the three momentary states at t-1, and by examining moderation by SCL-severity.

Results

Mental states impacted dynamically on each other over time, in interaction with SCL-severity groups. Thus, SCL-90 severity groups were characterized by progressively greater inter- and intra-mental state connection strength, and greater inter- and intra-mental state connection variability.

Conclusion

Diagnosis in psychiatry can be described as stages of growing dynamic causal impact of mental states over time. This system achieves a mode of psychiatric diagnosis that combines nomothetic (group-based classification across stages) and idiographic (individual-specific psychopathological profiles) components of psychopathology at the level of momentary mental states impacting on each other over time.  相似文献   
13.
Over the last years, important advances have been made in the study of the production of exopolysaccharides (EPS) by several lactic acid bacteria, including Lactococcus lactis. From different EPS-producing lactococcal strains the specific eps gene clusters have been characterised. They contain eps genes, which are involved in EPS repeating unit synthesis, export, polymerisation, and chain length determination. The function of the glycosyltransferase genes has been established and the availability of these genes opened the way to EPS engineering. In addition to the eps genes, biosynthesis of EPS requires a number of housekeeping genes that are involved in the metabolic pathways leading to the EPS-building blocks, the nucleotide sugars. The identification and characterisation of several of these housekeeping genes (galE, galU, rfbABCD) allows the design of metabolic engineering strategies that should lead to increased EPS production levels by L. lactis. Finally, model developme nt has been initiated in order to predict the physicochemical consequences of the addition of a EPS to a product.  相似文献   
14.
The embryonic myosin isoform is expressed during fetal development and rapidly down-regulated after birth. Freeman-Sheldon syndrome (FSS) is a disease associated with missense mutations in the motor domain of this myosin. It is the most severe form of distal arthrogryposis, leading to overcontraction of the hands, feet, and orofacial muscles and other joints of the body. Availability of human embryonic muscle tissue has been a limiting factor in investigating the properties of this isoform and its mutations. Using a recombinant expression system, we have studied homogeneous samples of human motors for the WT and three of the most common FSS mutants: R672H, R672C, and T178I. Our data suggest that the WT embryonic myosin motor is similar in contractile speed to the slow type I/β cardiac based on the rate constant for ADP release and ADP affinity for actin-myosin. All three FSS mutations show dramatic changes in kinetic properties, most notably the slowing of the apparent ATP hydrolysis step (reduced 5–9-fold), leading to a longer lived detached state and a slowed Vmax of the ATPase (2–35-fold), indicating a slower cycling time. These mutations therefore seriously disrupt myosin function.  相似文献   
15.
Although normothermic machine perfusion of donor livers may allow assessment of graft viability prior to transplantation, there are currently no data on what would be a good parameter of graft viability. To determine whether bile production is a suitable biomarker that can be used to discriminate viable from non-viable livers we have studied functional performance as well as biochemical and histological evidence of hepatobiliary injury during ex vivo normothermic machine perfusion of human donor livers. After a median duration of cold storage of 6.5 h, twelve extended criteria human donor livers that were declined for transplantation were ex vivo perfused for 6 h at 37°C with an oxygenated solution based on red blood cells and plasma, using pressure controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion. During perfusion, two patterns of bile flow were identified: (1) steadily increasing bile production, resulting in a cumulative output of ≥30 g after 6 h (high bile output group), and (2) a cumulative bile production <20 g in 6 h (low bile output group). Concentrations of transaminases and potassium in the perfusion fluid were significantly higher in the low bile output group, compared to the high bile output group. Biliary concentrations of bilirubin and bicarbonate were respectively 4 times and 2 times higher in the high bile output group. Livers in the low bile output group displayed more signs of hepatic necrosis and venous congestion, compared to the high bile output group. In conclusion, bile production could be an easily assessable biomarker of hepatic viability during ex vivo machine perfusion of human donor livers. It could potentially be used to identify extended criteria livers that are suitable for transplantation. These ex vivo findings need to be confirmed in a transplant experiment or a clinical trial.  相似文献   
16.
17.
18.
19.
20.
Internalization of activated receptors from the plasma membrane has been implicated in the activation of mitogen-activated protein (MAP) kinase. However, the mechanism whereby membrane trafficking may regulate mitogenic signaling remains unclear. Here we report that dominant-negative dynamin (K44A), an inhibitor of endocytic vesicle formation, abrogates MAP kinase activation in response to epidermal growth factor, lysophosphatidic acid, and protein kinase C-activating phorbol ester. In contrast, dynamin-K44A does not affect the activation of Ras, Raf, and MAP kinase kinase (MEK) by either agonist. Through immunofluorescence and subcellular fractionation studies, we find that activated MEK is present both at the plasma membrane and in intracellular vesicles but not in the cytosol. Our findings suggest that dynamin-regulated endocytosis of activated MEK, rather than activated receptors, is a critical event in the MAP kinase activation cascade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号