首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   847篇
  免费   57篇
  904篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   8篇
  2015年   14篇
  2014年   16篇
  2013年   66篇
  2012年   35篇
  2011年   44篇
  2010年   30篇
  2009年   31篇
  2008年   51篇
  2007年   66篇
  2006年   62篇
  2005年   50篇
  2004年   59篇
  2003年   60篇
  2002年   54篇
  2001年   5篇
  2000年   5篇
  1999年   11篇
  1998年   12篇
  1997年   14篇
  1996年   12篇
  1995年   11篇
  1994年   9篇
  1993年   7篇
  1992年   14篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1988年   4篇
  1986年   8篇
  1984年   10篇
  1983年   10篇
  1982年   11篇
  1981年   9篇
  1980年   10篇
  1979年   4篇
  1978年   3篇
  1977年   8篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   5篇
  1969年   2篇
  1967年   2篇
排序方式: 共有904条查询结果,搜索用时 0 毫秒
31.
Carotenoids play important and diverse roles in insects. Recently, we purified and partially characterized a carotenoid-binding protein (CBP) from the wild type of Bombyx mori. In this report, we utilized immunoblotting, ELISA and immunocytochemistry to further characterize and localize the expression of CBP in the larval midgut and silk gland obtained from the wild type and four naturally occurring mutants linked to carotenoids transport. CBP was expressed throughout the 5th stadium, with highest expressions on days 4-5 in the silk gland and days 3-5 in the midgut. Immunoblotting analyses demonstrated the presence of CBP along the middle part of the midgut. Microscopic immunocytochemistry demonstrated that the 33 kDa CBP was uniformly expressed along the brush border of columnar cells in the epithelium of the midgut typifying its function in aiding absorption of dietary carotenoids. Similarly, CBP was highly expressed along the distal membrane of the middle part of the silk gland demonstrating its function in uptake of carotenoids from lipophorin. When the middle silk glands and midguts of the four mutants were incubated with rabbit anti-CBP antibody, only proteins of the Y-gene dominant mutants cross reacted with the antibody further accentuating the hypothesis that the CBP is a Y-gene dependent protein.  相似文献   
32.
Serum paraoxonase activity decreases in rheumatoid arthritis   总被引:6,自引:0,他引:6  
OBJECTIVE: To estimate the alterations of paraoxonase 1 (PON1) and high-density lipoprotein (HDL) in rheumatoid arthritis (RA). DESIGN AND METHODS: We investigated the serum enzyme activity and concentration of PON1 and their relationship with serum lipids, high-density lipoprotein (HDL) parameters, and acute phase reactants of serum amyloid A (SAA) and C-reactive protein (CRP) in patients with RA. RESULTS: Serum paraoxonase (PON) activity was significantly decreased in RA patients (n = 64, 131 +/- 53 micro mol/min/L) compared with healthy subjects (n = 155, 164 +/- 59) despite the absence of any difference in serum lipid levels between the two groups. This decrease of serum PON activity in RA patients was found in every genotype (Q/Q, Q/R, R/R) of PON1 at 192 Q/R. There was a different distribution in PON1 Q/R genotypes between RA patients and healthy subjects, and RA patients exhibited less (44%) positive PON1-Q than did the healthy subjects (66%). In a further investigation of age- and gender-matched subgroups of RA (n = 25) and healthy subjects (n = 25), not only serum PON activity, but also lecithin-cholesterol acyltransferase (LCAT) was found to be significantly decreased in RA patients (125 +/- 61 micro mol/min/L, 63.2 +/- 17.2 nmol/ml/hr/37 degrees C) than in healthy subjects (169 +/- 67, 74.7 +/- 19.5), respectively. PON1 and LCAT as well as HDL constituent apolipoprotein (apo) AI and apo AII, were altered significantly in RA patients. CONCLUSIONS: Acute-phase HDL, which is remodeled structurally and functionally in RA, might be less anti-atherogenic due to the impairment of original HDL function. These alterations of HDL in RA patients may explain in part the reported increase in cardiovascular mortality in patients with RA.  相似文献   
33.
It has been reported that inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase suppress cell proliferation and induce apoptosis. One inhibitor which induces apoptosis is mevastatin. However, the molecular mechanism of apoptosis induction is not well understood so the effects of mevastatin on various functions of HL-60 cells were investigated. We confirmed that mevastatin activated caspase-3 by release of cytochrome c (Cyt. c) from mitochondria through a membrane permeability transition mechanism and also induced typical fragmentation and ladder formation of DNA in HL-60 cells. These effects were inhibited by mevalonate, a metabolic intermediate of cholesterol biosynthesis. Mevalonate and geranylgeraniol (GGOH) inhibited DNA fragmentation whereas farnesol (FOH) did not. Mevastatin also induced cell differentiation to monocytic cells via a mevalonate inhibitable mechanism. Furthermore, mevastatin decreased the amount of an isoprenylated membrane bound Rap1 small GTPase concomitant with an increase in cytosolic Rap1 which occurred before apoptosis and differentiation. On the contrary, both mevastatin and geranylgeranylacetone (GGA), which competes with geranylgeranyl pyrophosphate, induced membrane depolarization of isolated mitochondria without swelling and Cyt. c release. These results suggest that mevastatin-induced apoptosis of HL-60 cells might be caused indirectly by activation of the caspase cascade through the modulation of mitochondrial functions and that some relationship between a certain small GTPase molecule, such as Rap1, and mevastatin-induced apoptosis may exist.  相似文献   
34.
The opening of mitochondrial membrane permeability transition (MPT) pores, which results in a cyclosporin A (CsA)-sensitive and Ca(2+)-dependent dissipation of the membrane potential (delta psi) and swelling (classical MPT), has been postulated to play an important role in the release of cytochrome c (Cyt.c) and also in apoptotic cell death. Recently, it has been reported that CsA-insensitive or Ca(2+)-independent MPT can be classified as non-classic MPT. Therefore, we studied the effects of apoptosis-inducing agents on mitochondrial functions with respect to their CsA-sensitivity and Ca(2+)-dependency. CsA-sensitive mitochondrial swelling, depolarization, and the release of Ca2+ and Cyt.c were induced by low concentrations of arachidonic acid, triiodothyronine (T3), or 6-hydroxdopamine but not by valinomycin and high concentrations of the fatty acid or T3. Fe2+/ADP and 2,2,-azobis-(2-amidinopropane) dihydrochloride (AAPH) induced swelling of mitochondria and the release of Ca2+ and Cyt.c were not coupled with depolarization or CsA-sensitivity while dibucaine-induced swelling occurred without depolarization, Cyt.c-release or by a CsA-sensitive mechanism. A protonophoric FCCP and SF-6847 induced depolarization and Ca(2+)-release occurred in a CsA-insensitive manner and failed to stimulate the release of Cyt.c. These results indicate that ambient conditions of mitochondria can greatly influence the state of membrane stability and that Cyt.c release may occur not only via a CsA-sensitive MPT but also by way of a CsA-insensitive membrane deterioration.  相似文献   
35.
Actin is a ubiquitous and highly conserved microfilament protein that is hypothesized to play a mechanical force-generating role in the unusual gliding motility of sporozoan zoites and their active penetration of host cells. We have identified and isolated an actin gene from a Babesia gibsoni cDNA library by random sequencing. The complete nucleotide sequence of the actin gene is 1,243 bp; a single open reading frame encodes a polypeptide of 377 amino acid residues. The deduced amino acid sequence showed a high homology with actins from other species, especially with reported apicomplexan protozoans. The antiserum against recombinant actin expressed in Escherichia coli recognizes a 42-kDa native protein, which is consistent with its expected size. Immunofluorescence and confocal microscopic observation revealed that the protein is diffusely distributed throughout the B. gibsoni parasites.  相似文献   
36.
The transport pathway of specific dietary carotenoids from the midgut lumen to the silk gland in the silkworm, Bombyx mori, is a model system for selective carotenoid transport because several genetic mutants with defects in parts of this pathway have been identified that manifest altered cocoon pigmentation. In the wild-type silkworm, which has both genes, Yellow blood (Y) and Yellow cocoon (C), lutein is transferred selectively from the hemolymph lipoprotein to the silk gland cells where it is accumulated into the cocoon. The Y gene encodes an intracellular carotenoid-binding protein (CBP) containing a lipid-binding domain known as the steroidogenic acute regulatory protein-related lipid transfer domain. Positional cloning and transgenic rescue experiments revealed that the C gene encodes Cameo2, a transmembrane protein gene belonging to the CD36 family genes, some of which, such as the mammalian SR-BI and the fruit fly ninaD, are reported as lipoprotein receptors or implicated in carotenoid transport for visual system. In C mutant larvae, Cameo2 expression was strongly repressed in the silk gland in a specific manner, resulting in colorless silk glands and white cocoons. The developmental profile of Cameo2 expression, CBP expression, and lutein pigmentation in the silk gland of the yellow cocoon strain were correlated. We hypothesize that selective delivery of lutein to specific tissue requires the combination of two components: 1) CBP as a carotenoid transporter in cytosol and 2) Cameo2 as a transmembrane receptor on the surface of the cells.  相似文献   
37.
38.
Superoxide dismutase (SOD) is supposed to be an effective agent for neutrophil-mediated inflammation in the area of critical medicine. We investigated the involvement of SOD in the regulation of neutrophil apoptosis. Exogenously added SOD effectively induced neutrophil apoptosis, and the fluorescence patterns determined using annexin-V and the 7-AAD were similar to those seen in Fas-mediated neutrophil apoptosis. Neutrophils are short-lived leukocytes that need to be removed safely by apoptosis. The clearance of apoptotic neutrophils from sites of inflammation is a crucial determinant of the resolution of inflammation. Catalase inhibited the neutrophil apoptosis and caspase-3 activation. Spontaneous apoptosis, hydrogen peroxide and anti-Fas antibody-induced apoptosis of neutrophils were accelerated in Down's syndrome patients, in whom the SOD gene is overexpressed. Hydrogen peroxide was thought to be a possible major mediator of ROS-induced neutrophil apoptosis in caspase-dependent manner. Neutrophil apoptosis represents a crucial step in the mechanism governing the resolution of inflammation and has been suggested as a possible target for the control of neutrophil-mediated tissue injury. SOD may be a potential inhibitory mediator of neutrophil-mediated inflammation.  相似文献   
39.
The effect of amytal on energy metabolism and acid secretion in an isolated gastric mucosa of the guinea-pig were studied. Determination of adenine nucleotides, creatine phosphate, pyruvate and lactate in the gastric mucosa showed that amytal depressed the levels of ATP, creatine phosphate and energy charge with elevation of the AMP and pyruvate levels. This treatment inhibited concomitantly acid secretion and active chloride transport detected by short circuit current. The addition of menadione with ascorbate to the medium in the presence of amytal partially restored ATP and energy charge levels and also induced a partial recovery of acid secretion and active chloride transport. These results suggest that ATP is a direct energy donor for acid secretion in the gastric mucosa of the guinea-pig.  相似文献   
40.
Tif6p (eIF6) is necessary for 60S biogenesis, rRNA maturation and must be released from 60S to permit 80S assembly and translation. We characterized Tif6p interactors. Tif6p is mostly on 66S-60S pre-ribosomes, partly free. Tif6p complex(es) contain nucleo-ribosomal factors and Asc1p. Surprisingly, Tif6p particle contains the low-abundance endonuclease Sen34p. We analyzed Sen34p role on rRNA/tRNA synthesis, in vivo. Sen34p depletion impairs tRNA splicing and causes unexpected 80S accumulation. Accordingly, Sen34p overexpression causes 80S decrease and increased polysomes which suggest increased translational efficiency. With delayed kinetics, Sen34p depletion impairs rRNA processing. We conclude that Sen34p is absolutely required for tRNA splicing and that it is a rate-limiting element for efficient translation. Finally, we confirm that Tif6p accompanies 27S pre-rRNA maturation to 25S rRNA and we suggest that Sen34p endonuclease in Tif6p complex may affect also rRNA maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号