全文获取类型
收费全文 | 847篇 |
免费 | 57篇 |
专业分类
904篇 |
出版年
2022年 | 3篇 |
2021年 | 5篇 |
2020年 | 5篇 |
2019年 | 6篇 |
2018年 | 5篇 |
2017年 | 7篇 |
2016年 | 8篇 |
2015年 | 14篇 |
2014年 | 16篇 |
2013年 | 66篇 |
2012年 | 35篇 |
2011年 | 44篇 |
2010年 | 30篇 |
2009年 | 31篇 |
2008年 | 51篇 |
2007年 | 66篇 |
2006年 | 62篇 |
2005年 | 50篇 |
2004年 | 59篇 |
2003年 | 60篇 |
2002年 | 54篇 |
2001年 | 5篇 |
2000年 | 5篇 |
1999年 | 11篇 |
1998年 | 12篇 |
1997年 | 14篇 |
1996年 | 12篇 |
1995年 | 11篇 |
1994年 | 9篇 |
1993年 | 7篇 |
1992年 | 14篇 |
1991年 | 10篇 |
1990年 | 10篇 |
1989年 | 6篇 |
1988年 | 4篇 |
1986年 | 8篇 |
1984年 | 10篇 |
1983年 | 10篇 |
1982年 | 11篇 |
1981年 | 9篇 |
1980年 | 10篇 |
1979年 | 4篇 |
1978年 | 3篇 |
1977年 | 8篇 |
1976年 | 3篇 |
1975年 | 2篇 |
1974年 | 2篇 |
1973年 | 5篇 |
1969年 | 2篇 |
1967年 | 2篇 |
排序方式: 共有904条查询结果,搜索用时 15 毫秒
101.
To increase tissue glycogen content many athletes use anabolic androgenic steroids (AAS). However, the literature concerning the effects of androgens on glycogen metabolism is conflicting. This study aimed to determine the influence of training and AAS on body weight (bw), triglycerides, glucose, tissue glycogen and transaminases levels. Male Wistar rats, randomized into four groups (sedentary vehicle (SV), sedentary AAS (SA), trained vehicle (TV) and trained AAS (TA)), were treated with nadrolone (5 mg/Kg, 2x/week, i.m.) or vehicle. Trained rats performed jumps into water (4 sets, 10 repetitions, 30 sec rest) carrying a 50-70% body wt-load strapped to the chest (5 days/week,6 weeks). Two days after the last session, the animals were killed (bifatorial ANOVA+Tukey test; P < 0.05). Trained animals presented lower bw (TV:345+/-7 vs. SV:380+/-7 and TA:328+/-4 vs SA:370+/-11 g) and triglycerides levels (TV:77+/-3 vs. SV:98+/-4 and TA:79+/-3 vs. SA:98+/-8 mg/dL) and higher glycogen content in liver (TV:5.3+/-0.2 vs. SV:3.9+/-0.1 and TA:5.3+/-0.3 vs. SA:4.6+/-0,2 mg/100 mg) and in gastrocnemious (TV:0.70+/-0.02 vs. SV:0.49+/-0.01 and TA:0.73+/-0.03 vs. SA:0.57+/-0.02 mg/100 mg) than sedentary ones. In the cardiac muscle, the association between training and AAS increased glycogen content (TA:0.19+/-0.01 > SV:0.13+/-0.01=TV:0.13+/-0.01=SA:0.14+/-0.01 mg/100 mg). In the soleus AAS increased glycogen (SA:0.53+/-0.03 vs. SV:0.43+/-0.01 and TA:0.58+/-0.02 vs. TV:0.48+/-0.01 mg/100 mg). Exercise training and AAS had no effect on blood glucose and transaminases levels. Training and AAS effects on glycogen supercompensation are tissue-dependent and the effects of association between them were only observed in the cardiac muscle. These data emphasize the necessity of more studies to confirm greater effects of AAS than those promoted by physical exercise. 相似文献
102.
Nishimura T Yamaguchi T Tokunaga A Hara A Hamaguchi T Kato K Iwamatsu A Okano H Kaibuchi K 《Molecular biology of the cell》2006,17(3):1273-1285
Numb has been implicated in cortical neurogenesis during nervous system development, as a result of its asymmetric partitioning and antagonizing Notch signaling. Recent studies have revealed that Numb functions in clathrin-dependent endocytosis by binding to the AP-2 complex. Numb is also expressed in postmitotic neurons and plays a role in axonal growth. However, the functions of Numb in later stages of neuronal development remain unknown. Here, we report that Numb specifically localizes to dendritic spines in cultured hippocampal neurons and is implicated in dendritic spine morphogenesis, partially through the direct interaction with intersectin, a Cdc42 guanine nucleotide exchange factor (GEF). Intersectin functions as a multidomain adaptor for proteins involved in endocytosis and cytoskeletal regulation. Numb enhanced the GEF activity of intersectin toward Cdc42 in vivo. Expression of Numb or intersectin caused the elongation of spine neck, whereas knockdown of Numb and Numb-like decreased the protrusion density and its length. Furthermore, Numb formed a complex with EphB2 receptor-type tyrosine kinase and NMDA-type glutamate receptors. Knockdown of Numb suppressed the ephrin-B1-induced spine development and maturation. These results highlight a role of Numb for dendritic spine development and synaptic functions with intersectin and EphB2. 相似文献
103.
AF-6 controls integrin-mediated cell adhesion by regulating Rap1 activation through the specific recruitment of Rap1GTP and SPA-1 总被引:9,自引:0,他引:9
Su L Hattori M Moriyama M Murata N Harazaki M Kaibuchi K Minato N 《The Journal of biological chemistry》2003,278(17):15232-15238
In the present study, we showed that SPA-1, a Rap1 GTPase-activating protein (GAP), was bound to a cytoskeleton-anchoring protein AF-6. SPA-1 and AF-6 were co-immunoprecipitated in the 293T cells transfected with both cDNAs as well as in normal thymocytes. In vitro binding studies using truncated fragments and their mutants suggested that SPA-1 was bound to the PDZ domain of AF-6 via probable internal PDZ ligand motif within the GAP-related domain. The motif was conserved among Rap1 GAPs, and it was shown that rapGAP I was bound to AF-6 comparably with SPA-1. RapV12 was also bound to AF-6 via the N-terminal domain, and SPA-1 and RapV12 were co-immunoprecipitated only in the presence of AF-6, indicating that they could be brought into close proximity via AF-6 in cells. Immunostaining analysis revealed that SPA-1 and RapV12 were co-localized with AF-6 at the cell attachment sites. In HeLa cells expressing SPA-1 in a tetracycline-regulatory manner, expression of AF-6 inhibited endogenous Rap1GTP and beta(1) integrin-mediated cell adhesion to fibronectin in SPA-1-induced conditions, whereas it affected neither of them in SPA-1-repressed conditions. These results suggested that AF-6 could control integrin-mediated cell adhesion by regulating Rap1 activation through the recruitment of both SPA-1 and Rap1GTP via distinct domains. 相似文献
104.
Tanno B Negroni A Vitali R Pirozzoli MC Cesi V Mancini C Calabretta B Raschellà G 《The Journal of biological chemistry》2002,277(26):23172-23180
105.
Sugawara K Dohmae N Kasai K Saido-Sakanaka H Okamoto S Takio K Ochi K 《Bioscience, biotechnology, and biochemistry》2002,66(10):2292-2296
An important role of protein ADP-ribosylation in bacterial morphogenesis has been proposed (J. Bacteriol. 178, 3785-3790; 178, 4935-4941). To clarify the detail of ADP-ribosylation, we identified a new kind of target protein for ADP-ribosylation in Streptomyces coelicolor A3(2) grown to the late growth phase. All four proteins (MalE, BldKB, a periplasmic protein for binding branched-chain amino-acids, and a periplasmic solute binding protein) were functionally similar and participated in the regulation of transport of metabolites or nutrients through the membrane. ADP-ribosylation was likely to occur on a cysteine residue, because the modification group was removed by mercuric chloride treatment. The modification site may be the site of lipoprotein modification necessary for protein export. This report is the first suggesting that certain proteins involved in membrane transport can be ADP-ribosylated. 相似文献
106.
Ishikawa S Kuno A Tanno M Miki T Kouzu H Itoh T Sato T Sunaga D Murase H Miura T 《American journal of physiology. Heart and circulatory physiology》2012,302(12):H2536-H2544
Sarcolemmal connexin-43 (Cx43) and mitochondrial Cx43 play distinct roles: formation of gap junctions and production of reactive oxygen species (ROS) for redox signaling. In this study, we examined the hypothesis that Cx43 contributes to activation of a major cytoprotective signal pathway, phosphoinositide 3-kinase (PI3K)-Akt-glycogen synthase kinase-3β (GSK-3β) signaling, in cardiomyocytes. A δ-opioid receptor agonist {[d-Ala(2),d-Leu(5)]enkephalin acetate (DADLE)}, endothelin-1 (ET-1), and insulin-like growth factor-1 (IGF-1) induced phosphorylation of Akt and GSK-3β in H9c2 cardiomyocytes. Reduction of Cx43 protein to 20% of the normal level by Cx43 small interfering RNA abolished phosphorylation of Akt and GSK-3β induced by DADLE or ET-1 but not that induced by IGF-1. DADLE and IGF-1 protected H9c2 cells from necrosis after treatment with H(2)O(2) or antimycin A. The protection by DADLE or ET-1, but not that by IGF-1, was lost by reduction of Cx43 protein expression. In contrast to Akt and GSK-3β, PKC-ε, ERK and p38 mitogen-activated protein kinase were phosphorylated by ET-1 in Cx43-knocked-down cells. Like diazoxide, an activator of the mitochondrial ATP-sensitive K(+) channel, DADLE and ET-1 induced significant ROS production in mitochondria, although such an effect was not observed for IGF-1. Cx43 knockdown did not attenuate the mitochondrial ROS production by DADLE or ET-1. Cx43 was coimmunoprecipitated with the β-subunit of G protein (Gβ), and knockdown of Gβ mimicked the effect of Cx43 knockdown on ET-1-induced phosphorylation of Akt and GSK-3β. These results suggest that Cx43 contributes to activation of class I(B) PI3K in PI3K-Akt-GSK-3β signaling possibly as a cofactor of Gβ in cardiomyocytes. 相似文献
107.
EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2) 下载免费PDF全文
Saito N Xu J Hosaka T Okamoto S Aoki H Bibb MJ Ochi K 《Journal of bacteriology》2006,188(13):4952-4961
Disruption of eshA, which encodes a 52-kDa protein that is produced late during the growth of Streptomyces coelicolor A3(2), resulted in elimination of actinorhodin production. In contrast, disruption of eshB, a close homologue of eshA, had no effect on antibiotic production. The eshA disruptant accumulated lower levels of ppGpp than the wild-type strain accumulated. The loss of actinorhodin production in the eshA disruptant was restored by expression of a truncated relA gene, which increased the ppGpp level to the level in the wild-type strain, indicating that the reduced ppGpp accumulation in the eshA mutant was solely responsible for the loss of antibiotic production. Antibiotic production was also restored in the eshA mutant by introducing mutations into rpoB (encoding the RNA polymerase β subunit) that bypassed the requirement for ppGpp, which is consistent with a role for EshA in modulating ppGpp levels. EshA contains a cyclic nucleotide-binding domain that is essential for its role in triggering actinorhodin production. EshA may provide new insights and opportunities to unravel the molecular signaling events that occur during physiological differentiation in streptomycetes. 相似文献
108.
Kabir AM Clark JE Tanno M Cao X Hothersall JS Dashnyam S Gorog DA Bellahcene M Shattock MJ Marber MS 《American journal of physiology. Heart and circulatory physiology》2006,291(4):H1893-H1899
To examine whether cardioprotection initiated by reactive oxygen species (ROS) is dependent on protein kinase Cepsilon (PKCepsilon), isolated buffer-perfused mouse hearts were randomized to four groups: 1) antimycin A (AA) (0.1 microg/ml) for 3 min followed by 10 min washout and then 30 min global ischemia (I) and 2 h reperfusion (R); 2) controls of I/R alone; 3) AA bracketed with 13 min of N-2-mercaptopropionyl- glycine (MPG) followed by I/R; and 4) MPG (200 microM) alone, followed by I/R. Isolated adult rat ventricular myocytes (ARVM) were exposed to AA (0.1 microg/ml), and lucigenin was used to measure ROS production. Murine hearts and ARVM were exposed to AA (0.1 microg/ml) with or without MPG, and PKCepsilon translocation was measured by cell fractionation and subsequent Western blot analysis. Finally, the dependence of AA protection on PKCepsilon was determined by the use of knockout mice (-/-) lacking PKCepsilon. AA exposure caused ROS production, which was abolished by the mitochondrial uncoupler mesoxalonitrile 4-trifluoromethoxyphenylhydrazone. In addition, AA significantly reduced the percent infarction-left ventricular volume compared with control I/R (26 +/- 4 vs. 43 +/- 2%; P < 0.05). Bracketing AA with MPG caused a loss of protection (52 +/- 7 vs. 26 +/- 4%; P < 0.05). AA caused PKCepsilon translocation only in the absence of MPG, and protection was lost on the pkcepsilon(-/-) background (38 +/- 3 vs. 15 +/- 4%; P < 0.001). AA causes ROS production, on which protection and PKCepsilon translocation depend. In addition, protection is absent in PKCepsilon null hearts. Our results imply that, in common with ischemic preconditioning, PKCepsilon is crucial to ROS-mediated protection. 相似文献
109.
Hayashi Takahisa; Takeda Takumi; Ogawa Kozo; Mitsuishi Yasushi 《Plant & cell physiology》1994,35(6):893-899
Xyloglucan oligosaccharides were isolated with various degreesof polymerization (DP) and reduced with tritiated sodium borohydride.The 3H-oligosaccharides were tested for their ability to bindto amorphous and microcrystalline celluloses and to cellulosefilter paper. The time course of binding indicated that theradiolabeled oligosaccharides continued to be bound for at least1 h after heating at 120°C. The binding probably requiredthe organization of the oligosaccharides and celluloses by gradualannealing after heating. Although neither pentasaccharide (glucose:xylose, 3 : 2), heptasaccharide (glucose: xylose, 4 : 3) andnonasaccharide (glucose : xylose : galactose : fucose, 4 : 3: 1 : 1) failed to bind to the celluloses, binding occurredwith oligosaccharides with DP equivalent to more than four consecutive1,4-ß-glucosyl residues. The extent of binding tothe celluloses increased gradually from octasaccharide (glucose:xylose, 5 : 3) to hendecosanosaccharide (glucose/xylose, 12: 9), with the increase in the DP of 1,4-ß-glucosylresidues. The binding of reduced cello-dextrins to celluloserequired at least 4 consecutive 1,4-ß-glucosyl residues.The extent of binding of cellopentitol or cellohexitol to cellulosewas similar to that of hendecosanosaccharide, showing lowerbinding for xyloglucan oligosaccharides in spite of longer chainsof 1,4-ß-glucosyl residues. These findings suggestthat the mode of binding to cellulose of xyloglucan oligosaccharidesis different from that of cello-oligosaccharides. (Received February 18, 1994; Accepted June 1, 1994) 相似文献
110.