首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1384篇
  免费   85篇
  1469篇
  2021年   11篇
  2019年   6篇
  2018年   12篇
  2017年   15篇
  2016年   11篇
  2015年   25篇
  2014年   25篇
  2013年   80篇
  2012年   51篇
  2011年   71篇
  2010年   33篇
  2009年   48篇
  2008年   85篇
  2007年   86篇
  2006年   74篇
  2005年   71篇
  2004年   72篇
  2003年   80篇
  2002年   68篇
  2001年   30篇
  2000年   25篇
  1999年   38篇
  1998年   27篇
  1997年   17篇
  1996年   19篇
  1995年   16篇
  1994年   12篇
  1993年   10篇
  1992年   27篇
  1991年   21篇
  1990年   20篇
  1989年   20篇
  1988年   15篇
  1987年   17篇
  1986年   23篇
  1985年   16篇
  1984年   18篇
  1983年   16篇
  1982年   18篇
  1981年   14篇
  1980年   11篇
  1979年   8篇
  1978年   7篇
  1977年   8篇
  1976年   9篇
  1975年   10篇
  1974年   8篇
  1973年   16篇
  1972年   8篇
  1971年   8篇
排序方式: 共有1469条查询结果,搜索用时 15 毫秒
51.
Phosphorylation is a major post‐translational modification that plays a central role in signaling pathways. Protein kinases phosphorylate substrates (phosphoproteins) by adding phosphate at Ser/Thr or Tyr residues (phosphosites). A large amount of data identifying and describing phosphosites in phosphoproteins has been reported but the specificity of phosphorylation is not fully resolved. In this report, data of kinase‐substrate pairs identified by the Kinase‐Interacting Substrate Screening (KISS) method were used to analyze phosphosites in intrinsically disordered regions (IDRs) of intrinsically disordered proteins. We compared phosphorylated and nonphosphorylated IDRs and found that the phosphorylated IDRs were significantly longer than nonphosphorylated IDRs. The phosphorylated IDR is often the longest IDR (71%) in a phosphoprotein when only a single phosphosite exists in the IDR, and when the phosphoprotein has multiple phosphosites in an IDR(s), the phosphosites are primarily localized in a single IDR (78%) and this IDR is usually the longest one (81%). We constructed a stochastic model of phosphorylation to estimate the effect of IDR length. The model that accounted for IDR length produced more realistic results when compared with a model that excluded the IDR length. We propose that the IDR length is a significant determinant for locating kinase phosphorylation sites in phosphoproteins.  相似文献   
52.
Modified fungal product 4-O-methylascochlorin (MAC) is an experimental agent affecting lipid and carbohydrate metabolism in mammals. The hypocholesterolemic properties of MAC were studied using rats fed on a standard laboratory diet. Because of the insolubility in water, reproducibility of the hypocholesterolemic activity had usually been poor for rats fed ad libitum. The difficulty was overcome by controlled reverse-phase feeding; MAC significantly lowered serum total cholesterol (s-TC) in rats only when given by gastric intubation soon after diet intake.

MAC increased fecal excretion of neutral and acidic sterols and also increased biliary flow accompanying increments in biliary cholesterol, bile acids and phospholipids. A much larger increase in neutral sterols was characteristic for MAC. However, intestinal absorption of cholesterol and cholic acid was unaffected by MAC. Three mechanisms therefore seemed to be working in hypocholesterolemic activity: (a) withdrawal of hepatic cholesterol into bile, (b) a larger fecal loss of sterols following increment of biliary sterols and (c) enhanced bile acid synthesis compensating the larger fecal loss. A negative sterol balance often leads to an increase in hepatic cholesterogenesis. However, cholesterogenesis, as judged from incorporation of the precursors, was unchanged by MAC.  相似文献   
53.
54.
The kinetics of the reversible fumarase reaction of immobilized Brevibacterium ammoniagenes cells and the decay behavior of enzyme activity were investigated in a plug flow system. The time course of the reaction in the immobilized cell column was well explained by the time-conversion equation including the apparent kinetic constants of the immobilized cell enzyme. The decay rate of fumarase activity was faster in the upper sections of the column (inlet side of the substrate solution) compared with the lower sections when 1M sodium fumarate (pH 7.0) was continuously passed through the column at 37°C. It was shown that the decay rate of the fumarase activity in the immobilized cell column depends on the flow rate of the substrate solution. The effect of flow rate on the decay rate of enzyme activity was considered to be related to the rate of contamination of enzyme with poisonous substances derived from the substrate solution or to the rate of leakage of enzyme stabilizers and/or enzyme itself from the immobilized cells.  相似文献   
55.
The mechanism by which dihydroconiferyl alcohol (DCA) stimulatesindole-3-acetic acid (IAA)-induced elongation of cucumber hypocotylsections was studied. Although DCA did not affect the uptakeof IAA-5-3H by hypocotyl sections, the endogenous level of IAA-5-3Hin DCA-treated sections was much higher than in DCA untreatedones. IAA-5-3H in the incubation medium was degraded in thepresence of hypocotyl sections, and this degradation of IAAwas inhibited by DCA. An in vitro experiment with horseradishperoxidase revealed that DCA inhibited the IAA degrading activityof the oxidase, as did caffeic acid and ferulic acid. Theseresults suggested that DCA enhances IAA-induced cucumber hypocotylelongation by acting as an antioxidant of IAA. (Received June 4, 1975; )  相似文献   
56.
Finegoldia magna (formerly Peptostreptococcus magnus), a memberof the Gram-positive anaerobic cocci (GPAC), is a commensalbacterium colonizing human skin and mucous membranes. Moreover,it is also recognized as an opportunistic pathogen responsiblefor various infectious diseases. Here, we report the completegenome sequence of F. magna ATCC 29328. The genome consistsof a 1 797 577 bp circular chromosome and an 189 163bp plasmid (pPEP1). The metabolic maps constructed based onthe genome information confirmed that most F. magna strainscannot ferment most sugars, except fructose, and have variousaminopeptidase activities. Three homologs of albumin-bindingprotein, a known virulence factor useful for antiphagocytosis,are encoded on the chromosome, and one albumin-binding proteinhomolog is encoded on the plasmid. A unique feature of the genomeis that F. magna encodes many sortase genes, of which substratesmay be involved in bacterial pathogenesis, such as antiphagocytosisand adherence to the host cell. The plasmid pPEP1 encodes sevensortase and seven substrate genes, whereas the chromosome encodesfour sortase and 19 substrate genes. These plasmid-encoded sortasesmay play important roles in the pathogenesis of F. magna byenriching the variety of cell wall anchored surface proteins.  相似文献   
57.
Physical exercise reportedly stimulates IL-1 production within working skeletal muscles, but its physiological significance remains unknown due to the existence of two distinct IL-1 isoforms, IL-1α and IL-1β. The regulatory complexities of these two isoforms, in terms of which cells in muscles produce them and their distinct/redundant biological actions, have yet to be elucidated. Taking advantage of our masticatory behavior (Restrained/Gnawing) model, we herein show that IL-1α/1β-double-knockout (IL-1-KO) mice exhibit compromised masseter muscle (MM) activity which is at least partially attributable to abnormalities of glucose handling (rapid glycogen depletion along with impaired glucose uptake) and dysfunction of IL-6 upregulation in working MMs. In wild-type mice, masticatory behavior clearly increased IL-1β mRNA expression but no incremental protein abundance was detectable in whole MM homogenates, whereas immunohistochemical staining analysis revealed that both IL-1α- and IL-1β-immunopositive cells were recruited around blood vessels in the perimysium of MMs after masticatory behavior. In addition to the aforementioned phenotype of IL-1-KO mice, we found the IL-6 mRNA and protein levels in MMs after masticatory behavior to be significantly lower in IL-1-KO than in WT. Thus, our findings confirm that the locally-increased IL-1 elicited by masticatory behavior, although present small in amounts, contributes to supporting MM activity by maintaining normal glucose homeostasis in these muscles. Our data also underscore the importance of IL-1-mediated local interplay between autocrine myokines including IL-6 and paracrine cytokines in active skeletal muscles. This interplay is directly involved in MM performance and fatigability, perhaps mediated through maintaining muscular glucose homeostasis.  相似文献   
58.
59.
Abstract Monoclonal antibodies (mAbs) have been produced by immunizing BALB/C mice with whole M+ bacteria in incomplete Freund adjuvant and the resulting mAbs for M3 protein have been selected by an indirect immuno-fluorescent technique using formaldehyde-fixed M+ and M bacteria. Four mAbs reacted with a 65 kDa protein in an extract obtained from the cell wall of M+ bacteria after treatment with N -acetyl muramidase and lysozyme. The purified 65 kDa protein neutralized the phagocytic activity of rabbit anti-M3 antibody. The N-terminal amino acid sequence of the 65 kDa protein was identical with that of protein generated by the M3 gene which has been previously cloned and sequenced. The evidence indicates that the 65 kDa protein is M3 protein. The M3 protein bound not only human fibrinogen but also human serum albumin (HSA). When the M3 protein was purified by gel-filtration and ion-exchange chromatography in the absence of phenylmethyl sulfonyl fluoride (PMSF), four fragments (35 kDa, 32 kDa, 30 kDa, and 25 kDa) in addition to the intact molecule appeared. N-terminal amino acid sequence analysis showed that 35 kDa and 25 kDa fragments were ANAAD and DARSV, respectively, being identical at positions 1–5 and 198–202 to the M3 gene derived protein. Therefore, the 35 kDa and 25 kDa fragments, which were presumed to be cleavage products, may be derived from the C-terminal part and N-terminal part of the intact molecule, respectively. When the effect of purified M3 protein in the bactericidal activity of normal human blood in the presence of M bacteria was investigated, the M3 protein was responsible for the organism's resistance to attack by phagocytic cells.  相似文献   
60.
We isolated two new keratin cDNAs by screening a cDNA library constructed from poly(A)+ RNA of the dorsal and abdominal skin of C57BL/10J mice with a probe of human KRT14. Due to its high sequence homology to human keratin 17 cDNA, one full-length cDNA is most likely to be mouse keratin 17 (Krt1-17) cDNA. The other is the putative full-length cDNA of a novel type I keratin gene, designated Krt1-c29. These two keratin genes were mapped to the distal portion of Chromosome 11, where the mouse keratin gene complex-1 (Krt1) is localized. To elucidate the genomic organization of Krt1 in mice, we carried out genetic and physical analyses of Krt1. A large-scale linkage analysis using intersubspecific backcrosses suggested that there are two major clusters in Krt1, one containing Krt1-c29, Krt1-10, and Krt1-12 and the other containing Krt1-14, -15, -17, and -19. Truncation experiments with two yeast artificial chromosome clones containing the two clusters above have revealed that the gene order of Krt1 is centromere-Krt1-c29-Krt1-10-Krt1-12-Krt1-13-K rt1-15-Krt1-19-Krt1-14-K rt1-17-telomere. Finally, we analyzed sequence divergence between the genes belonging to the Krt1 complex. The results clearly indicated that genes are classified into two major groups with respect to phylogenetic relationship. Each group consists of the respective gene cluster demonstrated by genetic and physical analyses in this study, suggesting that the physical organization of the Krt1 complex reflects the evolutionary process of gene duplication of this complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号