首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   27篇
  国内免费   2篇
  2023年   1篇
  2018年   1篇
  2017年   3篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1975年   3篇
  1973年   4篇
  1972年   1篇
  1970年   4篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1965年   2篇
  1957年   1篇
  1956年   2篇
排序方式: 共有100条查询结果,搜索用时 143 毫秒
31.
L M Kozloff  L K Crosby    M Lute 《Journal of virology》1975,16(6):1409-1419
Two T4D thymidylate synthetase (td) temperature-sensitive mutants have been isolated and characterized. Both mutants produce heat-labile phage particles. This observation supports the view that this viral-induced protein is a phage structural component. Further, antiserum to td has been shown to block a specific step in tail plate morphogenesis. The results indicated that the td protein is largely covered by the T4D tail plate gene 11 protein. Since the phageinduced dihydrofolate reductase (dfr) also is partially covered by the gene 11 protein, it appears that td was adjacent to the tail plate dfr. This location has been confirmed by constructing a T4D mutant which is dfrtstdts and showing that these two tail plate constituents interact and give altered physical properties to the phage particles produced. A structural relationship for the tail plate folate, dfr, and td has been reported.  相似文献   
32.
Summary The proteins synthesized in Escherichia coli B cells after infection with various T4 bacteriophage tail baseplate mutants were analysed by the immunoblotting method for the presence of the 15 Kilodalton lysozyme found in phage T4 particles. Using three different antisera: anti-phage, anti-baseplate and anti-15K lysozyme, it has been found that the 15K lysozyme is not present in lysates of bacteria infected with T4 gene 25 amber mutants. The 15K lysozyme was also found to be expressed in E. coli B cells transformed with a plasmid containing only a small portion of the T4 genome but which included T4 gene 25. These observations indicate that the 15K lysozyme is the gene 25 product.  相似文献   
33.
The T4D bacteriophage gene 28 product is a component of the central plug of the tail baseplate, as shown by the following two independent lines of evidence. (i) A highly sensitive method for radioactive labeling of only tail baseplate plug components was developed. These labeled plug components were incorporated by a complementation procedure into new phage particles and were analyzed by radioautography after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three new structural proteins were found in addition to the three known tail plug proteins (i.e., gP29, gP27, and gP5). One of the three newly identified components had a molecular weight of 24,000 to 25,000 and appeared to be a product of T4D gene 28. (ii) Characterization of mutants of Escherichia coli bacteriophage T4D which produced altered gene 28 products also indicated that the gene 28 product was a viral tail component. T4D 28ts phage particles produced at the permissive temperature had altered heat labilities compared with parent T4D particles. We isolated a single-step temperature revertant of T4D 28ts and found that it produced phage particles which phenotypically resembled the original T4D particles. Since the properties of the phage baseplate components usually determine heat lability, these two changes in physical stability after two sequential single mutations in gene 28 supported the other evidence that the gene 28 product was a viral baseplate component. Also, compared with parent T4D particles, T4D 28ts and T4D 28am viral particles adsorbed at different rates to various types of host cells. In addition, T4D 28ts particles exhibited a different host range than parent T4D particles. This T4D mutant formed plaques with an extremely low efficiency on all E. coli K-12 strains tested. We found that although T4D 28ts particles adsorbed rapidly and irreversibly to the E. coli K-12 strains, as judged by gene rescue experiments, these particles were not able to inject their DNA into the E. coli K-12 strains. On the other hand, the T4D 28ts revertant had a plating efficiency on E. coli K-12 strains that was quite similar to the plating efficiency of the original parent, T4D. These properties of phage particles containing an altered gene 28 product supported the analytical finding that the gene 28 product is a structural component of the central plug of the T4D tail baseplate. They also indicated that this component plays a role in both host cell recognition and viral DNA injection.  相似文献   
34.
Synthetic pteroyl hexaglutamate (9 x 10(-6) M) stimulated the formation of new T4D particles in vitro in extracts of Escherichia coli B infected with T4D gene 28(-). The stimulation was specific for this form of folic acid since neither pteroyl pentaglutamate nor pteroyl heptaglutamate stimulated phage formation. T4D formation in vitro in E. coli B extracts prepared after infection with 11 other phage mutants known to be involved in phage tail plate formation (5(-), 6(-), 7(-), 8(-), 10(-), 25(-), 26(-), 27(-), 29(-), 51(-), 53(-)) was not stimulated by the addition of pteroyl hexaglutamate. It can be concluded that the T4D gene 28 product is involved in the formation of the phage tail plate pteroyl hexaglutamate.  相似文献   
35.
Chemically Induced Cofactor Requirement for Bacteriophage T4D   总被引:1,自引:0,他引:1       下载免费PDF全文
The treatment of bacteriophage T4D with 2-hydroxy-5-nitrobenzyl bromide, a specific reagent for alkylating the indole ring of tryptophan residues, converts these particles from a cofactor-independent form to a cofactor-sensitive form. These treated T4D particles phenotypically resemble T4B particles in certain respects. Their ability to form plaques on minimal medium plates is increased by the addition of l-tryptophan and is inhibited by the addition of indole. In liquid medium, their rate of adsorption is dependent on the presence of the cofactor l-tryptophan. l-Tryptophan-requiring phage have been produced by in vitro assembly of treated tail-fiberless particles of a T4D amber mutant plus untreated tail fiber preparation. When treated tail fibers were used with untreated tail-fiberless particles, the newly assembled particles did not require cofactor. A model of the tail structure of all the T-even bacteriophages is presented which postulates that the active configuration of the tail fibers requires that there be either (i) an endogenous tryptophan residue of the phage particle itself or (ii) an exogenously added l-tryptophan molecule complexed with a specific tryptophan receptor site, most likely on the phage base plate.  相似文献   
36.
Components of ice nucleation structures of bacteria   总被引:7,自引:1,他引:6       下载免费PDF全文
Nonprotein components attached to the known protein product of the inaZ gene of Pseudomonas syringae have been identified and shown to be necessary for the most efficient ice nucleation of supercooled H2O. Previous studies have shown that cultures of Ina+ bacteria have cells with three major classes of ice-nucleating structures with readily differentiated activities. Further, some cells in the culture have nucleating activities intermediate between those of the different classes and presumably have structures that are biosynthetic intermediates between those of the different classes. Since these structures cannot be readily isolated and analyzed, their components have been identified by the use of specific enzymes or chemical probes, by direct incorporation of labeled precursors, and by stimulation of the formation of specific classes of freezing structures by selective additions to the growth medium. From these preliminary studies it appears that the most active ice nucleation structure (class A) contains the ice nucleation protein linked to phosphatidylinositol and mannose, probably as a complex mannan, and possibly glucosamine. These nonprotein components are characteristic of those used to anchor external proteins to cell membranes of eucaryotic cells and suggest that a similar but not identical anchoring mechanism is required for efficient ice nucleation structure. The class B structure has been found to contain protein presumably linked to the mannan and glucosamine moieties but definitely not to the phosphatidylinositol. The class C structure, which has the poorest ice nucleation activity, appears to be the ice nucleation protein linked to a few mannose residues and to be partially imbedded in the outer cell membrane.  相似文献   
37.
The preliminary finding that nonprotein additions to the protein product of the ice-nucleating gene of Pseudomonas syringae or Erwinia herbicola are essential for ice nucleation at the warmest temperatures has led to experiments aimed at identifying possible linkages between the ice protein and the other components. It appears that the protein is coupled to various sugars through N- and O-glycan linkages. Mannose residues are apparently bound via an N-glycan bond to the amide nitrogen of one or more of the three essential asparagine residues in the unique amino-terminal portion of the protein. In turn, these mannose residues are involved in the subsequent attachment of phosphatidylinositol to the nucleation structure. This phosphatidylinositol-mannose-protein structure is the critical element in the class A nucleating structure. In addition to sugars attached to the asparagine residues, additional sugar residues appear to be attached by O-glycan linkages to serine and threonine residues in the primary repeating octapeptide, which makes up 70% of the total ice protein. These additional sugar residues include galactose and glucosamine and most likely additional mannose residues. These conclusions were based on (i) the changes in ice-nucleating activity due to the action of N- and O-glycanases, alpha- and beta-mannosidoses, and beta-galactosidase; (ii) immunoblot analyses of ice proteins in cell extracts after enzyme treatments; and (iii) the properties of transformed Ice+ Escherichia coli cells containing plasmids with defined amino-terminal and carboxyl-terminal deletions in the ice gene. Finally, evidence is presented that these sugar residues may play a role in aggregating the ice gene lipoglycoprotein compound into larger aggregates, which are the most effective ice nucleation structures.  相似文献   
38.
Products of two bacteriophage T4D genes, 26 and 51, both known to be essential for the formation of the central hub of the phage tail baseplate, have been partially characterized chemically, and their biological role has been examined. The gene 26 product was found to be a protein with a molecular size of 41,000 daltons and the gene 51 product a protein of 16,500 daltons. The earlier proposal (L. M. Kozloff and J. Zorzopulos, J. Virol. 40:635-644), from observations of a 40,000-dalton protein in labeled hubs, that the gene 26 product is a structural component of the baseplate, has been confirmed. The gene 51 product, not yet detected in phage particles, appears from indirect evidence also to be a structural component of the baseplate hub. These current conclusions about the gene 26 and 51 products are based on properties of T4 mutant particles containing altered gene 26 or 51 products and include (i) changes in heat lability, (ii) changes in adsorption rates, and (iii) changes in plating efficiencies on different hosts, and with the results of previous isotope incorporation experiments indicate that T4 particles contain three copies of the gene 26 product and possibly one or at most two copies of the gene 51 product. Properties of these mutant particles indicate that the gene 26 product, together with the other hub components such as the gene 28 product, plays a critical role in phage DNA injection into the host cell, whereas the 51 product seems essential in initiating baseplate hub assembly.  相似文献   
39.
40.

Background

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Infections of the respiratory tract are a hallmark in CF. The host immune responses in CF are not adequate to eradicate pathogens, such as P. aeruginosa. Dendritic cells (DC) are crucial in initiation and regulation of immune responses. Changes in DC function could contribute to abnormal immune responses on multiple levels. The role of DC in CF lung disease remains unknown.

Methods

This study investigated the expression of CFTR gene in bone marrow-derived DC. We compared the differentiation and maturation profile of DC from CF and wild type (WT) mice. We analyzed the gene expression levels in DC from naive CF and WT mice or following P. aeruginosa infection.

Results

CFTR is expressed in DC with lower level compared to lung tissue. DC from CF mice showed a delayed in the early phase of differentiation. Gene expression analysis in DC generated from naive CF and WT mice revealed decreased expression of Caveolin-1 (Cav1), a membrane lipid raft protein, in the CF DC compared to WT DC. Consistently, protein and activity levels of the sterol regulatory element binding protein (SREBP), a negative regulator of Cav1 expression, were increased in CF DC. Following exposure to P. aeruginosa, expression of 3β-hydroxysterol-Δ7 reductase (Dhcr7) and stearoyl-CoA desaturase 2 (Scd2), two enzymes involved in the lipid metabolism that are also regulated by SREBP, was less decreased in the CF DC compared to WT DC.

Conclusion

These results suggest that CFTR dysfunction in DC affects factors involved in membrane structure and lipid-metabolism, which may contribute to the abnormal inflammatory and immune response characteristic of CF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号