首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2353篇
  免费   125篇
  2478篇
  2022年   16篇
  2021年   17篇
  2020年   14篇
  2019年   23篇
  2018年   28篇
  2017年   37篇
  2016年   49篇
  2015年   65篇
  2014年   68篇
  2013年   159篇
  2012年   103篇
  2011年   116篇
  2010年   83篇
  2009年   68篇
  2008年   138篇
  2007年   113篇
  2006年   109篇
  2005年   118篇
  2004年   95篇
  2003年   127篇
  2002年   126篇
  2001年   59篇
  2000年   76篇
  1999年   59篇
  1998年   30篇
  1997年   30篇
  1996年   20篇
  1995年   27篇
  1994年   16篇
  1993年   25篇
  1992年   46篇
  1991年   41篇
  1990年   30篇
  1989年   37篇
  1988年   29篇
  1987年   29篇
  1986年   23篇
  1985年   28篇
  1984年   19篇
  1983年   17篇
  1982年   14篇
  1981年   9篇
  1980年   14篇
  1979年   10篇
  1977年   12篇
  1976年   9篇
  1975年   12篇
  1974年   16篇
  1972年   15篇
  1971年   9篇
排序方式: 共有2478条查询结果,搜索用时 15 毫秒
901.
Lettuce tipburn is an irreversible physiological disorder caused by calcium deficiency that decreases the crop value. Breeding a tipburn-resistant cultivar is the only causal therapy in many cases. In this study, we investigated an efficient method to evaluate lettuce resistance to tipburn in vitro. Seedlings of 19 lettuce cultivars representing three head types were cultured on agar medium containing EGTA, which chelates Ca2+. The percentage of tipburned leaves decreased proportionally with EGTA concentration. Susceptible cultivars were distinguished at 0.01 mM EGTA, whereas resistant cultivars were classified at 1.0 mM EGTA. Based on mean values of tipburn measurements, tipburn susceptibility was highest for ‘Leaf Lettuce’, followed by ‘Butterhead Lettuce’, and then ‘Crisphead Lettuce’. Two cultivars were selected for further tests using hydroponic and pot culture. The rank order of susceptibility to tipburn in these experiments was consistent with that of the in vitro assay. The in vitro evaluation of lettuce susceptibility to calcium deficiency is useful for initial screening of lettuce cultivars against tipburn incidence. Resistant cultivars identified in this study are practical candidates for cultivation in controlled environments, such as a plant factory, while sensitive cultivars are also useful as indicator plants to monitor environmental conditions.  相似文献   
902.
During development, axons are guided to their target areas and provide local branching. Spatiotemporal regulation of axon branching is crucial for the establishment of functional connections between appropriate pre‐ and postsynaptic neurons. Common understanding has been that neuronal activity contributes to the proper axon branching; however, intracellular mechanisms that underlie activity‐dependent axon branching remain elusive. Here, we show, using primary cultures of the dentate granule cells, that neuronal depolarization‐induced rebalance of mitochondrial motility between anterograde versus retrograde transport underlies the proper formation of axonal branches. We found that the depolarization‐induced branch formation was blocked by the uncoupler p‐trifluoromethoxyphenylhydrazone, which suggests that mitochondria‐derived ATP mediates the observed phenomena. Real‐time analysis of mitochondrial movement defined the molecular mechanisms by showing that the pharmacological activation of AMP‐activated protein kinase (AMPK) after depolarization increased anterograde transport of mitochondria into axons. Simultaneous imaging of axonal morphology and mitochondrial distribution revealed that mitochondrial localization preceded the emergence of axonal branches. Moreover, the higher probability of mitochondrial localization was correlated with the longer lifetime of axon branches. We qualitatively confirmed that neuronal ATP levels decreased immediately after depolarization and found that the phosphorylated form of AMPK was increased. Thus, this study identifies a novel role for AMPK in the transport of axonal mitochondria that underlie the neuronal activity‐dependent formation of axon branches. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 557–573, 2014  相似文献   
903.
A variety of extracellular stimuli regulate cellular responses via membrane receptors. A well-known group of seven-transmembrane domain-containing proteins referred to as G protein-coupled receptors, directly couple with the intracellular GTP-binding proteins (G proteins) across cell membranes and trigger various cellular responses by regulating the activity of several enzymes as well as ion channels. Many specific populations of ion channels are directly controlled by G proteins; however, indirect modulation of some channels by G protein-dependent phosphorylation events and lipid metabolism is also observed. G protein-mediated diverse modifications affect the ion channel activities and spatio-temporally regulate membrane potentials as well as of intracellular Ca2 + concentrations in both excitatory and non-excitatory cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   
904.
Association of cellular influences and physical and chemical properties were examined for 24 kinds of industrial metal oxide nanoparticles: ZnO, CuO, NiO, Sb(2)O(3), CoO, MoO(3), Y(2)O(3), MgO, Gd(2)O(3), SnO(2), WO(3), ZrO(2), Fe(2)O(3), TiO(2), CeO(2), Al(2)O(3), Bi(2)O(3), La(2)O(3), ITO, and cobalt blue pigments. We prepared a stable medium dispersion for each nanoparticle and examined the influence on cell viability and oxidative stress together with physical and chemical characterizations. ZnO, CuO, NiO, MgO, and WO(3) showed a large amount of metal ion release in the culture medium. The cellular influences of these soluble nanoparticles were larger than insoluble nanoparticles. TiO(2), SnO(2), and CeO(2) nanoparticles showed strong protein adsorption ability; however, cellular influences of these nanoparticles were small. The primary particle size and the specific surface area seemed unrelated to cellular influences. Cellular influences of metal oxide nanoparticles depended on the kind and concentrations of released metals in the solution. For insoluble nanoparticles, the adsorption property was involved in cellular influences. The primary particle size and specific surface area of metal oxide nanoparticles did not affect directly cellular influences. In conclusion the most important cytotoxic factor of metal oxide nanoparticles was metal ion release.  相似文献   
905.
The primary structures of cis-prenyltransferases are completely different from those of trans-prenyltransferases. To obtain information about amino acid residues relating to catalytic function, random mutation of the undecaprenyl diphosphate synthase gene of Micrococcus luteus B-P 26 was carried out to construct a mutated gene library using an error-prone polymerase chain reaction. From the library, the mutants showing poor enzymatic activity were selected by the colony autoradiography method. Among 31 negative clones selected from 3,000 mutants, two clones were found to contain only one amino acid substitution at either Asn-77 or Trp-78. To determine the functional roles of these interesting residues, we prepared six mutated enzymes with substitutions at residues Asn-77 or Trp-78 by site-directed mutagenesis. Substitution of Asn-77 with Ala, Asp, or Gln resulted in a dramatic decrease in catalytic activity, but the K(m) values for both allylic and homoallylic substrates of these mutant enzymes were comparable to those of the wild-type. On the other hand, three Trp-78 mutants, W78I, W78R, and W78D, showed 5-20-fold increased K(m) values for farnesyl diphosphate but not for Z-geranylgeranyl diphosphate. However, these mutants showed moderate levels of enzymatic activity and comparable K(m) values for isopentenyl diphosphate to that of the wild-type. These results suggest that the Asn-Trp motif is involved in the binding of farnesyl diphosphate and enzymatic catalysis.  相似文献   
906.
Tissue culture for the deep-sea clam Calyptogena soyoae (C. soyoae) has been examined. Mantle tissue was cultured in Dulbecco's modified Eagle medium that was prepared using artificial seawater supplemented with fetal bovine serum (FBS) and the body fluid of C. soyoae. The mantle cells were viable in culture for at least 13 days at 4°C and atmospheric pressure on a polylysine-coated dish, although no cells attached in the body fluid-free culture medium. It was found that mantle cells synthesized DNA and seemed to proliferate under atmospheric conditions. Received: June 1, 2000 / Accepted: October 4, 2000  相似文献   
907.
Summary The electrical properties of a mouse interleukin (IL)-3-dependent cell line, FDC-P2, were examined using the tightseal whole-cell clamp technique. Under current clamp conditions with 140mM K+ in the pipette, the cells had a resting potential of –30 mV. Under voltage-clamp conditions, a transient outward current was elicited upon depolarization from a holding potential of –80 mV. The current was activated at potentials more positive than –10 mV and had a delayed-rectifying property. It showed rapid activation and slow inactivation during command steps. The current was abolished by Cs+ in the pipette, indicating that K+ is the charge carrier. The K+ current was suppressed by tetraethylammonium withK i of <0.1mM and was not affected by scorpion toxin. Recovery from inactivation was steeply voltage dependent: As the holding potential was more hyperpolarized, the recovery became faster. Thus, with a holding potential of –80 mV, the current showed slight use-dependent inactivation, while the current decreased prominently by repetitive depolarization at a holding potential of –40 mV. These properties of the K+ current are similar to those of thel-type K+ channel current in mature T lymphocytes. The K+ current in FDC-P2 cells was dramatically reduced after culture in the IL-3-free medium for 1–2 days. When IL-3 was re-added to the medium, the current was re-expressed. These observations suggest that expression of the K+ current depends on extracellular IL-3, and that the current may play some roles in proliferation of these cells.  相似文献   
908.
Male and female F344 rats, 48 per exposure group, were sham exposed (Group A) or exposed to 0.5 (Group B) and 5 mT (Group C) magnetic fields for two years. Animals were exposed from 5–109 weeks of age in SPF conditions according to the OECD test guideline No. 451. Average exposure was 22.6 hr/day. No significant differences in body weight and food consumption were observed between the sham and exposed groups. At the end of the exposure period, survival rates of the male rats were 73, 83, and 79%, and those of the females, 77, 79, and 75% for Groups A, B, and C, respectively, with no significant differences between groups. Differential counts of leukocytes were measured at the 52nd, 78th, and 104th weeks of exposure and no significant differences were observed between the exposure groups. All survivors were euthanized on schedule, and all the organs and tissues suspected of tumoral lesions were examined histopathologically. Incidences of mononuclear cell leukemia in the male and the female rats were 5, 4, 4 and 8, 6, 7 for Groups A, B and C, respectively; incidences of malignant lymphoma in the female rats were 0, 1 and 1. Neither significant increases nor acceleration of incidence of leukemia were observed. Incidences of brain and intracranial tumors did not increase in the exposed groups. Incidences of both benign and malignant neoplasms showed no significant difference between the exposed and sham exposed groups with one exception: fibroma of the subcutis in the male rats, which was considered not to be a statistically significant when evaluated with respect to the historical control data in our laboratory. Bioelectromagnetics 18:531–540, 1997. © Wiley-Liss, Inc.  相似文献   
909.
This study describes a method of DNA extraction and amplification for ephippial cases of Daphnia resting eggs from lake sediment. Recent studies have reconstructed succession records of Daphnia species by genetically analyzing Daphnia resting eggs stored in lake sediments and revealed changes in dominant Daphnia species that correspond well with environmental changes. However, this approach is not applicable to lakes where most of the resting eggs in the sediment have already hatched out. We modified conventional methods for DNA extraction and amplification to enable genetic analyses of the ephippial case that envelops and protects the resting eggs, and we compared the performance of the modified method to the conventional one. We confirmed that we could efficiently analyze the sequences of the ephippial cases collected in a sediment core using our modified method. It enables us to reconstruct changes in genetic structure of Daphnia populations regardless of hatching rates of the resting eggs.  相似文献   
910.
There is a region exhibiting a similarity of amino acid sequence near the carboxyl-terminal segment of each FAD-containing oxidoreductase. In this region, four amino acid residues—Thr, Ala, Gly, and Asp—are highly conserved. To determine the involvement of the four amino acid residues (Thr-469, Ala-476, Gly-478, and Asp-479) in the activity of NADH dehydrogenase of an alkaliphilic Bacillus, mutations of these amino acid residues were conducted. In spite of high conservation, mutations of Thr-469 and Ala-476 to Ala and Ser, respectively, did not lead to a critical loss of enzyme activity. However, mutations of Gly-478 and Asp-479 to Ala caused a complete loss of the activity, which appears to result from the loss of binding capacity of FAD. Received: 3 July 2002 / Accepted: 29 July 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号