首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   27篇
  2022年   7篇
  2021年   4篇
  2020年   7篇
  2019年   4篇
  2018年   13篇
  2017年   6篇
  2016年   11篇
  2015年   22篇
  2014年   15篇
  2013年   49篇
  2012年   29篇
  2011年   24篇
  2010年   18篇
  2009年   18篇
  2008年   25篇
  2007年   18篇
  2006年   26篇
  2005年   33篇
  2004年   23篇
  2003年   22篇
  2002年   22篇
  2001年   21篇
  2000年   26篇
  1999年   26篇
  1998年   10篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   13篇
  1992年   17篇
  1991年   15篇
  1990年   13篇
  1989年   11篇
  1988年   11篇
  1987年   10篇
  1986年   8篇
  1985年   12篇
  1984年   9篇
  1983年   8篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1975年   4篇
  1974年   6篇
  1972年   4篇
  1971年   3篇
  1970年   4篇
排序方式: 共有672条查询结果,搜索用时 15 毫秒
41.
42.
43.
Legumain/asparaginyl endopeptidase (EC 3.4.22.34) is a novel cysteine protease that is abundantly expressed in the late endosomes and lysosomes of renal proximal tubular cells. Recently, emerging evidence has indicated that legumain might play an important role in control of extracellular matrix turnover in various pathological conditions such as tumor growth/metastasis and progression of atherosclerosis. We initially found that purified legumain can directly degrade fibronectin, one of the main components of the extracellular matrix, in vitro. Therefore, we examined the effect of legumain on fibronectin degradation in cultured mouse renal proximal tubular cells. Fibronectin processing can be inhibited by chloroquine, an inhibitor of lysosomal degradation, and can be enhanced by the overexpression of legumain, indicating that fibronectin degradation occurs in the presence of legumain in lysosomes from renal proximal tubular cells. Furthermore, in legumain-deficient mice, unilateral ureteral obstruction (UUO)-induced renal interstitial protein accumulation of fibronectin and renal interstitial fibrosis were markedly enhanced. These findings indicate that legumain might have an important role in extracellular matrix remodeling via the degradation of fibronectin in renal proximal tubular cells.  相似文献   
44.
45.
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide that is present in peripheral cells of islets and in nerves around and within islets. CGRP can inhibit insulin secretion in vitro and in vivo. Whether the inhibitory action of CGRP is mediated by somatostatin or by nerve terminals is, however, not known. The objective of this study was to examine the effect of CGRP on insulin secretion, using cultured newborn and adult rat islet cells which did not contain nerve terminals. In adult rat islet cells, CGRP (10(-10) to 10(-8) M) significantly inhibited glucose-stimulated and gastric inhibitory polypeptide (GIP)-potentiated insulin secretion, but in newborn rat islet cells, CGRP did not inhibit glucose-stimulated insulin secretion. Inhibition of glucose-stimulated and GIP-potentiated insulin release was dependent on the glucose concentration during the prestimulation period. CGRP did not stimulate release of somatostatin. These findings suggest that rat CGRP can act directly on beta-cells through a specific receptor that is absent in newborn rat beta-cells.  相似文献   
46.
Bone marrow development and endochondral bone formation occur simultaneously. During endochondral ossification, periosteal vasculatures and stromal progenitors invade the primary avascular cartilaginous anlage, which induces primitive marrow development. We previously determined that bone marrow podoplanin (PDPN)-expressing stromal cells exist in the perivascular microenvironment and promote megakaryopoiesis and erythropoiesis. In this study, we aimed to examine the involvement of PDPN-expressing stromal cells in postnatal bone marrow generation. Using histological analysis, we observed that periosteum-derived PDPN-expressing stromal cells infiltrated the cartilaginous anlage of the postnatal epiphysis and populated on the primitive vasculature of secondary ossification center. Furthermore, immunophenotyping and cellular characteristic analyses indicated that the PDPN-expressing stromal cells constituted a subpopulation of the skeletal stem cell lineage. In vitro xenovascular model cocultured with human umbilical vein endothelial cells and PDPN-expressing skeletal stem cell progenies showed that PDPN-expressing stromal cells maintained vascular integrity via the release of angiogenic factors and vascular basement membrane-related extracellular matrices. We show that in this process, Notch signal activation committed the PDPN-expressing stromal cells into a dominant state with basement membrane-related extracellular matrices, especially type IV collagens. Our findings suggest that the PDPN-expressing stromal cells regulate the integrity of the primitive vasculatures in the epiphyseal nascent marrow. To the best of our knowledge, this is the first study to comprehensively examine how PDPN-expressing stromal cells contribute to marrow development and homeostasis.  相似文献   
47.
48.
Cytostatin, which is isolated from a microbial cultured broth as a low molecular weight inhibitor of cell adhesion to extracellular matrix (ECM), has anti-metastatic activity against B16 melanoma cells in vivo. In this study, we examined a target of cytostatin inhibiting cell adhesion to ECM. Cytostatin inhibited tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin upon B16 cell adhesion to fibronectin. While the amount of FAK was not affected by cytostatin, electrophoretically slow-migrating paxillin appeared. Alkaline phosphatase treatment diminished cytostatin-induced slow-migrating paxillin. Furthermore, cytostatin increased intracellular serine/threonine-phosphorylated proteins and was found to be a selective inhibitor of protein phosphatase 2A (PP2A). Cytostatin inhibited PP2A with an IC(50) of 0.09 microgram/ml in a non-competitive manner against a substrate, p-nitrophenyl phosphate, but it had no apparent effect on other protein phosphatases including PP1, PP2B and alkaline phosphatase even at 100 microgram/ml. On the contrary, dephosphocytostatin, a cytostatin analogue, without inhibitory effect on PP2A did not affect B16 cell adhesion including FAK and paxillin. These results indicate that cytostatin inhibits cell adhesion through modification of focal contact proteins such as paxillin by inhibiting a PP2A type protein serine/threonine phosphatase. This is the first report that describes a drug with anti-metastatic ability that inhibits PP2A selectively.  相似文献   
49.
Although much evidence has been accumulated suggesting that tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance, the precise mechanism involved is still unclear. Recently, it has been reported that insulin-induced glucose uptake is mediated by activation of second messengers such as insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and diacylglycerol (DG)-protein kinase C (PKC). We have examined the effect of TNF-alpha on insulin-induced glucose uptake and activations of tyrosine kinase, IRS-1, PI3K and PKC in rat adipocytes. Pretreatment with 0.1-100 nM TNF-alpha for 60 min resulted in a significant decrease in 10 nM insulin- or 1 microM 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced [3H]2-deoxyglucose uptake without affecting basal glucose uptake. 10 nM insulin-stimulated activation of tyrosine kinase, IRS-1 and PI3K was suppressed by preincubation with 0.1-10 nM TNF-alpha for 60 min. 10 nM TNF-alpha pretreatment also suppressed 10 nM insulin- and 1 microM TPA-induced increases in membrane-associated PKCbeta and PKCzeta. Furthermore, 10 nM TNF-alpha, by itself, altered PKCbeta translocation from the membrane to cytosol. These results suggest that TNF-alpha inhibits insulin-stimulated activation of both the tyrosine kinase-IRS-1-PI3K-PKCzeta pathway and DG-PKC pathway. Finally, TNF-alpha contributes to insulin resistance in rat adipocytes.  相似文献   
50.
Ueda T  Koya S  Maruyama YK 《Bio Systems》1999,54(1-2):65-70
The placozoan Trichoplax adhaerence is one of the most primitive multi-cellular organisms, and moves about accompanying perpetual changes in its shape. Changes in position, locomotion velocity and the outer shape of the organism were monitored quantitatively with use of a computer image analysis, and their dynamic patterns in free locomotion and upon feeding were analyzed in terms of non-linear dynamics. The organism changed its behavioral patterns discontinuously in response to various concentrations of yeast extracts (food). (1) At low concentrations, the organism moved fast with perpetual random changes in shape. Both locomotion velocity and shape changes exhibited 1/f fluctuations. (2) At high concentrations, the shape of the organism as well as the locomotion exhibited oscillations with periods of about 8 min. These limit cycle oscillations bifurcated into the period 2 at the highest concentration tested. The organism flattened more strongly and the locomotion was more reduced on the whole at higher concentrations. (3) At the intermediate concentrations, two patterns as monitored above appeared: one pattern continued for a while and switched to the other abruptly. (4) The average square displacement of the organism increased linearly with time in all cases, indicating that the locomotion is a Brownian movement. In this way, the feeding behaviors by the placozoan are organized as successive co-operative transitions among non-linear dynamic states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号