首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2717篇
  免费   232篇
  国内免费   213篇
  3162篇
  2024年   5篇
  2023年   29篇
  2022年   67篇
  2021年   112篇
  2020年   75篇
  2019年   93篇
  2018年   91篇
  2017年   73篇
  2016年   100篇
  2015年   170篇
  2014年   179篇
  2013年   217篇
  2012年   265篇
  2011年   227篇
  2010年   146篇
  2009年   148篇
  2008年   174篇
  2007年   144篇
  2006年   109篇
  2005年   99篇
  2004年   93篇
  2003年   68篇
  2002年   82篇
  2001年   53篇
  2000年   38篇
  1999年   45篇
  1998年   24篇
  1997年   13篇
  1996年   17篇
  1995年   19篇
  1994年   20篇
  1993年   13篇
  1992年   20篇
  1991年   20篇
  1990年   15篇
  1989年   23篇
  1988年   5篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   4篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1977年   4篇
  1976年   4篇
  1974年   6篇
  1973年   3篇
  1966年   2篇
排序方式: 共有3162条查询结果,搜索用时 0 毫秒
151.
Human embryonic stem cell (hESC) derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction) and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP) are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag.  相似文献   
152.
The fatty acid (FA) signaling pathway is emerging as an important mechanism in plant responses during interactions with microbial organisms. For a comprehensive evaluation of key FA biosynthetic pathway genes during interactions of oil palm (Elaeis guineensis Jacq.) with the pathogenic Ganoderma boninense and symbiotic Trichoderma harzianum fungal organisms, a lane-based array analysis of gene expression in artificially inoculated oil palm seedlings was performed. The results obtained demonstrated that acetyl-CoA carboxylase (ACC), β-ketoacyl-ACP synthases (KAS) II and III, palmitoyl-ACP thioesterase (PTE), oleoyl-ACP thioesterase (OTE) and glycerol-3-phosphate acyltransferase (ACT) showed identical responses in root and leaf tissues for the same fungi. The expression of these genes was up-regulated in both root and leaf tissues at 21 days post-inoculation (dpi) during interaction of oil palm with G. boninense. Thereafter, production of physical symptoms occurred at 42 and 63 dpi concomitantly with suppression of expression of these genes. An increase in the expression level of these genes was observed in both tissues at 3–63 dpi, which correlated with the colonization of roots and promotion of plant growth by T. harzianum. These data suggest that FA biosynthetic pathway genes are involved in the defense response of oil palm to infection. Identical plant responses by FA biosynthetic pathway genes may lead to enhanced resistance against G. boninense and could be a useful marker to contribute towards early detection of infection. The distinct expression profile during symbiotic interaction demonstrated its role in plant resistance mechanisms and growth promotion by T. harzianum.  相似文献   
153.
154.
Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli, were overexpressed. In addition, the gene encoding ArnA (UDP-l-Ara4N formyltransferase/UDP-GlcA C-4″-decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside.  相似文献   
155.
156.
N S Tan  M L Ng  Y H Yau  P K Chong  B Ho  J L Ding 《FASEB journal》2000,14(12):1801-1813
Three truncated fragments, harboring different sushi domains, namely, sushi123, sushi1, and sushi3 domains, of Factor C were produced as biologically active secreted recombinant proteins. Sushi1 and 3 each has a high-affinity LPS binding site with K:(d) of 10(-9) to 10(-10) M. Positive cooperativity in sushi123 resulted in a 1000-fold increase in K:(d)2. The core LPS binding region of sushi1 and 3 reside in two 34-mer peptides, S1 and S3. A rigidly held disulfide-bonded structure is not essential but is important for LPS binding, as confirmed by a 100- to 10000-fold decrease in affinity. Both S1 and S3 can inhibit LAL reaction and LPS-induced hTNF-alpha secretion with different potency. LAL assay revealed that at least two molecules of S1 bind cooperatively to one LPS molecule, with Hill's coefficient of 2.42. The LPS binding by S3 is independent and noncooperative. The modified SDelta1 and SDelta3 peptides exhibited increased LPS neutralization potential although its LPS binding affinities indicated only a 10-fold improvement. Hence, the structural difference of the four sushi peptides conferred different efficiencies in LPS neutralization without altering their binding affinity for LPS. Circular dichroism spectrometry revealed that the four peptides underwent conformational change in the presence of lipid A, transitioning from a random coil to either an alpha-helical or beta-sheet structure. Two factors are critical for the sensitivity of Factor C to LPS: 1) the presence of multiple binding sites for LPS on a single Factor C molecule; and 2) high positive cooperativity in LPS binding. The results showed that in the design of an improved LPS binding and neutralizing peptide, charge balance of the peptide is a critical parameter in addition to its structure.  相似文献   
157.
The lithium–sulfur (Li–S) battery is a next generation high energy density battery, but its practical application is hindered by the poor cycling stability derived from the severe shuttling of lithium polysulfides (LiPSs). Catalysis is a promising way to solve this problem, but the rational design of relevant catalysts is still hard to achieve. This paper reports the WS2–WO3 heterostructures prepared by in situ sulfurization of WO3, and by controlling the sulfurization degree, the structure is controlled, which balances the trapping ability (by WO3) and catalytic activity (by WS2) toward LiPSs. As a result, the WS2–WO3 heterostructures effectively accelerate LiPS conversion and improve sulfur utilization. The Li–S battery with 5 wt% WS2–WO3 heterostructures as additives in the cathode shows an excellent rate performance and good cycling stability, revealing a 0.06% capacity decay each cycle over 500 cycles at 0.5 C. By building an interlayer with such heterostructure‐added graphenes, the battery with a high sulfur loading of 5 mg cm?2 still shows a high capacity retention of 86.1% after 300 cycles at 0.5 C. This work provides a rational way to prepare the metal oxide–sulfide heterostructures with an optimized structure to enhance the performance of Li–S batteries.  相似文献   
158.
AEG-1基因位于人染色体8q22,编码582个氨基酸,参与多种信号转导途径并与多种恶性肿瘤的发生、发展及生物学表型密切相关。为更好地探讨AEG-1生物学功能,以纯化的pGSTag-AEG-1蛋白免疫BALB/c小鼠,应用细胞融合技术并经筛选及鉴定,获得了分泌抗人AEG-1单克隆抗体的杂交瘤细胞株1E3;Western blot及免疫组化证实该细胞株分泌的单克隆抗体能与肿瘤细胞中AEG-1蛋白特异性结合;RT-PCR方法从1E3细胞中克隆出抗AEG-1抗体的VH和VL基因片段,通过测序分析、碱基和蛋白序列的比对确认该株抗体为鼠源性IgG的轻、重链可变区基因。进一步运用Kabat System在线分析系统对VH和VL基因进行结构分析,确证FWRs和CDRs的结构完整,VH编码117个氨基酸;VL编码119个氨基酸,属于轻链κV家族。实验结果为进一步研究AEG-1与恶性肿瘤发生、发展的关系及在其临床诊断中的应用奠定了基础。  相似文献   
159.
Tight junction plays an important rote in mediating paraceUular permeability in epithelia. We previously found that activation of AMP- activated protein kinase (AMPK) increased saliva secretion by modulating paraceUular permeability in submandibular glands. However, the molecular mechanisms underlying AMPK-modulated paraceUular permeability are unknown. In this study, we found that AICAR, an AMPK agonist, increased saliva secretion in the isolated rat submandibular glands, decreased transepithelial electrical resistance (TER), and increased 4 kDa FITC-dextran flux in cultured SMG-C6 cells. AICAR also induced redistribution of tight junction protein claudin-4, but not claudin-1, claudin-3, occtudin, or ZO-1, from the cytoplasm to the membrane. Moreover, knockdown of claudin-4 by shRNA suppressed while claudin-4 re-expression restored the TER and 4 kDa FITC-dextran flux responses to AICAR. Additionally, AICAR increased ERK1/2 phosphorylation, and inhibition of ERK1/2 by U0126, an ERK1/2 kinase inhibitor, or by siRNA decreased AICAR-induced TER responses. AICAR induced the serine S199 phosphorylation of claudin-4 and enhanced the inter- action of claudin-4 and occludin. Furthermore, pretreatment with U0126 significantly suppressed AMPK-modulated phosphorytation, redistribution, and interaction with occludin of claudin-4. Taken together, these results indicated that claudin-4 played a crucial role in AMPK-rnodutated paraceUular permeability and ERK1/2 was required in AMPK-modulated tight junction barrier function in subman- dibular gland.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号