首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   68篇
  655篇
  2020年   8篇
  2018年   7篇
  2017年   12篇
  2016年   14篇
  2015年   20篇
  2014年   25篇
  2013年   22篇
  2012年   32篇
  2011年   30篇
  2010年   14篇
  2009年   11篇
  2008年   14篇
  2007年   18篇
  2006年   20篇
  2005年   19篇
  2004年   22篇
  2003年   11篇
  2002年   21篇
  2001年   16篇
  2000年   20篇
  1999年   19篇
  1998年   11篇
  1997年   5篇
  1996年   11篇
  1994年   7篇
  1993年   6篇
  1992年   13篇
  1991年   7篇
  1990年   8篇
  1989年   14篇
  1988年   10篇
  1987年   11篇
  1986年   14篇
  1985年   10篇
  1984年   7篇
  1983年   10篇
  1981年   5篇
  1980年   6篇
  1979年   9篇
  1978年   9篇
  1977年   13篇
  1976年   8篇
  1975年   6篇
  1973年   6篇
  1972年   10篇
  1970年   6篇
  1969年   6篇
  1967年   6篇
  1966年   8篇
  1965年   5篇
排序方式: 共有655条查询结果,搜索用时 0 毫秒
121.
GABA (γ-aminobutyric acid) is important neurotransmitter and regulator of endocrine functions. Its metabolism involves three enzymes: glutamate decarboxylase (GAD65 and GAD67), GABA aminotransferase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). As many cellular processes GABA turnover can depend on calcium homeostasis, which is maintained by plasma membrane calcium ATPases (PMCAs). In excitable cells PMCA2 and PMCA3 isoforms are particularly important. In this study we focused on GABA-metabolizing enzymes expression and activity in rat anterior pituitary GH3 cells with suppressed expression of PMCA2 or PMCA3. We observed that PMCA3-reduced cells have increased GAD65 expression. Suppression of PMCA2 caused a decrease in total GAD and GABA-T activity. These results indicate that PMCA2 and PMCA3 presence may be an important regulatory factor in GABA metabolism. Results suggest that PMCA2 and PMCA3 function is rather related to regulation of GABA synthesis and degradation than supplying cells with metabolites, which can be potentially energetic source.  相似文献   
122.
Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS.  相似文献   
123.
In the developing cardiovascular system, hemodynamic vascular loading is critical for angiogenesis and cardiovascular adaptation. Normal zebrafish embryos with transgenically-labeled endothelial and red blood cells provide an excellent in vivo model for studying the fluid-flow induced vascular loading. To characterize the developmental hemodynamics of early embryonic great-vessel microcirculation in the zebrafish embryo, two complementary studies (experimental and numerical) are presented. Quantitative comparison of the wall shear stress (WSS) at the first aortic arch (AA1) of wild-type zebrafish embryos during two consecutive developmental stages is presented, using time-resolved confocal micro-particle image velocimetry (μPIV). Analysis showed that there was significant WSS difference between 32 and 48 h post-fertilization (hpf) wild-type embryos, which correlates with normal arch morphogenesis. The vascular distensibility of the arch wall at systole and the acceleration/deceleration rates of time-lapse phase-averaged streamwise blood flow curves were also analyzed. To estimate the influence of a novel intermittent red-blood cell (RBC) loading on the endothelium, a numerical two-phase, volume of fluid (VOF) flow model was further developed with realistic in vivo conditions. These studies showed that near-wall effects and cell clustering increased WSS augmentation at a minimum of 15% when the distance of RBC from arch vessel wall was less than 3 μm or when RBC cell-to-cell distance was less than 3 μm. When compared to a smooth wall, the WSS augmentation increased by a factor of ~1.4 due to the roughness of the wall created by the endothelial cell profile. These results quantitatively highlight the contribution of individual RBC flow patterns on endothelial WSS in great-vessel microcirculation and will benefit the quantitative understanding of mechanotransduction in embryonic great vessel biology, including arteriovenous malformations (AVM).  相似文献   
124.
The integrity of the genome is threatened by DNA damage that blocks the progression of replication forks. Little is known about the genomic locations of replication fork stalling, and its determinants and consequences in vivo. Here we show that bulky DNA damaging agents induce localized fork stalling at yeast replication origins, and that localized stalling is dependent on proximal origin activity and is modulated by the intra-S-phase checkpoint. Fork stalling preceded the formation of sister chromatid junctions required for bypassing DNA damage. Despite DNA adduct formation, localized fork stalling was abrogated at an origin inactivated by a point mutation and prominent stalling was not detected at naturally-inactive origins in the replicon. The intra-S-phase checkpoint contributed to the high-level of fork stalling at early origins, while checkpoint inactivation led to initiation, localized stalling and chromatid joining at a late origin. Our results indicate that replication forks initially encountering a bulky DNA adduct exhibit a dual nature of stalling: a checkpoint-independent arrest that triggers sister chromatid junction formation, as well as a checkpoint-enhanced arrest at early origins that accompanies the repression of late origin firing. We propose that the initial checkpoint-enhanced arrest reflects events that facilitate fork resolution at subsequent lesions.  相似文献   
125.

Introduction

This study aimed to evaluate whether profiles of several soluble mediators in synovial fluid and cartilage tissue are pathology-dependent and how their production is related to in vitro tissue formation by chondrocytes from diseased and healthy tissue.

Methods

Samples were obtained from donors without joint pathology (n = 39), with focal defects (n = 65) and osteoarthritis (n = 61). A multiplex bead assay (Luminex) was performed measuring up to 21 cytokines: Interleukin (IL)-1α, IL-1β, IL-1RA, IL-4, IL-6, IL-6Rα, IL-7, IL-8, IL-10, IL-13, tumor necrosis factor (TNF)α, Interferon (IFN)γ, oncostatin M (OSM), leukemia inhibitory factor (LIF), adiponectin, leptin, monocyte chemotactic factor (MCP)1, RANTES, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), vascular growth factor (VEGF).

Results

In synovial fluid of patients with cartilage pathology, IL-6, IL-13, IFNγ and OSM levels were higher than in donors without joint pathology (P ≤0.001). IL-13, IFNγ and OSM were also different between donors with cartilage defects and OA (P <0.05). In cartilage tissue from debrided defects, VEGF was higher than in non-pathological or osteoarthritic joints (P ≤0.001). IL-1α, IL-6, TNFα and OSM concentrations (in ng/ml) were markedly higher in cartilage tissue than in synovial fluid (P <0.01). Culture of chondrocytes generally led to a massive induction of most cytokines (P <0.001). Although the release of inflammatory cytokines was also here dependent on the pathological condition (P <0.001) the actual profiles were different from tissue or synovial fluid and between non-expanded and expanded chondrocytes. Cartilage formation was lower by healthy unexpanded chondrocytes than by osteoarthritic or defect chondrocytes.

Conclusions

Several pro-inflammatory, pro-angiogenic and pro-repair cytokines were elevated in joints with symptomatic cartilage defects and/or osteoarthritis, although different cytokines were elevated in synovial fluid compared to tissue or cells. Hence a clear molecular profile was evident dependent on disease status of the joint, which however changed in composition depending on the biological sample analysed. These alterations did not affect in vitro tissue formation with these chondrocytes, as this was at least as effective or even better compared to healthy chondrocytes.  相似文献   
126.

Caenorhabditis elegans body wall muscles release vesicles called exophers that transport muscle‐synthesized yolk proteins to nourish the next generation.  相似文献   
127.
Recent biochemical studies have suggested that apoptotic cell death is the molecular mechanism underlying the degeneration of ovarian follicles during atresia. Using a sensitive autoradiographic method for the detection of DNA fragmentation, we studied apoptosis in ovarian granulosa cells or intact follicles placed in serum-free culture as model systems to elucidate the hormonal regulation of atresia. Immature rats (25 days old) were primed for 2 days with 10 IU equine CG to induce a homogeneous population of mature preovulatory follicles. Granulosa cells isolated from these follicles contained predominantly intact high mol wt DNA. However, a time-dependent, spontaneous onset of internucleosomal DNA fragmentation characteristic of apoptotic cell death occurred in granulosa cells during culture. Treatment of granulosa cells with epidermal growth factor (EGF), transforming growth factor-alpha (TGF alpha), or basic fibroblast growth factor (bFGF) inhibited the spontaneous onset of apoptotic DNA cleavage found during culture by 40-60%. In contrast, insulin-like growth factor I, insulin, TGF beta and tumor necrosis factor-alpha were ineffective. Likewise, activation of the protein kinase A or C pathways with forskolin or phorbol 12-myristate 13-acetate, respectively, did not prevent the onset of DNA fragmentation, although inclusion of a tyrosine kinase inhibitor (genistein) completely blocked the ability of EGF, TGF alpha, and bFGF to suppress apoptosis in granulosa cells. Similar to cultured granulosa cells, a spontaneous onset of apoptosis was also observed to occur in isolated preovulatory follicles during culture. Furthermore, treatment of follicles with EGF or bFGF inhibited the spontaneous initiation of apoptosis, and the suppressive effects of these growth factors were also attenuated by co-treatment with genistein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
128.
Human serum vitamin D binding protein (hDBP), a 58-kDa inter-alpha-globulin, is known to bind, monomeric actin (G-actin) in equimolar quantities. Using monoclonal and polyclonal anti-hDBP antibodies, hDBP, and radioiodinated actin, we developed a reliable saturation assay for actin bound to hDBP. By utilizing this assay, kinetic analysis, and ultracentrifugal sedimentation in sucrose gradients, these proteins' binding affinities (Kd = 10(-9) M) were demonstrated to be 10- to 100-fold greater than earlier estimates. At 4 degrees C, hDBP has an association rate constant of 2.2 x 10(4) M-1 s-1 and a rate of dissociation displaying a t1/2 of 22 h. This high affinity binding was largely unaffected by conditions favoring actin filament formation (1 mM MgCl2 and/or 50 mM KCl), by the range of pH from 6.8 to 8.6 or by temperatures from 4 to 37 degrees C. Compared with ATP-alpha-actin, a 2-fold decrease of binding affinity was observed for the nonmuscle isoactins (beta,gamma), ADP-G-alpha-actin, and N'-ethylmaleimide-modified G-alpha-actin. The 25-hydroxyvitamin D3 and 1 alpha,25-dihydroxyvitamin D3 holo-sterol forms of hDBP bound actin in a manner indistinguishable from the apo-sterol hDBP. The common polymorphisms of hDBP (DBP1 slow, DBP1 fast, and DBP2) were shown to have an equal avidity for G-actin binding. Human platelet profilin competed with hDBP for binding to G-actin, but was 1000-fold less potent (Ki = 1.9 microM). When platelet profilactin was incubated with hDBP, profilin was liberated and hDBP-actin complexes formed. DNase I, which forms a triprotein complex with hDBP-G actin, did not alter the affinity of binding of actin by hDBP. The very high affinity binding observed, which was largely unaffected by the state of G-actin, pH, and ionic conditions, appears to support a constitutive role for plasma DBP in the sequestration of actin monomers, as well as actin from actin-profilin complexes, that are liberated during cell injury.  相似文献   
129.
130.
In patients with diaphragm paralysis, ventilation to the basal lung zones is reduced, whereas in patients with paralysis of the rib cage muscles, ventilation to the upper lung zones in reduced. Inspiration produced by either rib cage muscle or diaphragm contraction alone, therefore, may result in mismatching of ventilation and perfusion and in gas-exchange impairment. To test this hypothesis, we assessed gas exchange in 11 anesthetized dogs during ventilation produced by either diaphragm or intercostal muscle contraction alone. Diaphragm activation was achieved by phrenic nerve stimulation. Intercostal muscle activation was accomplished by electrical stimulation by using electrodes positioned epidurally at the T(2) spinal cord level. Stimulation parameters were adjusted to provide a constant tidal volume and inspiratory flow rate. During diaphragm (D) and intercostal muscle breathing (IC), mean arterial Po(2) was 97.1 +/- 2.1 and 88.1 +/- 2.7 Torr, respectively (P < 0.01). Arterial Pco(2) was lower during D than during IC (32.6 +/- 1.4 and 36.6 +/- 1.8 Torr, respectively; P < 0.05). During IC, oxygen consumption was also higher than that during D (0.13 +/- 0.01 and 0.09 +/- 0.01 l/min, respectively; P < 0.05). The alveolar-arterial oxygen difference was 11.3 +/- 1.9 and 7.7 +/- 1.0 Torr (P < 0.01) during IC and D, respectively. These results indicate that diaphragm breathing is significantly more efficient than intercostal muscle breathing. However, despite marked differences in the pattern of inspiratory muscle contraction, the distribution of ventilation remains well matched to pulmonary perfusion resulting in preservation of normal gas exchange.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号